版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏常熟中学2023-2024学年高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a2.已知点,向量,若,则点的坐标为()A. B.C. D.3.如果直线和同时平行于直线x-2y+3=0,则a,b的值为A.a= B.a=C.a= D.a=4.,,的大小关系是()A. B.C. D.5.已知,,则A. B.C. D.6.已知为平面,为直线,下列命题正确的是A.,若,则B.,则C.,则D.,则7.是第四象限角,,则等于A. B.C. D.8.函数在上的部分图象如图所示,则的值为A. B.C. D.9.给定函数①;②;③;④,其中在区间上单调递减的函数的序号是()A.①② B.②③C.③④ D.①④10.函数的图像必经过点A.(0,2) B.(4,3)C.(4,2) D.(2,3)二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆心为(1,1),经过点(4,5),则圆标准方程为_____________________.12.已知幂函数过定点,且满足,则的范围为________13.已知扇形的弧长为,半径为1,则扇形的面积为___________.14.设集合,,则_________15.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________16.若直线与圆相切,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)18.设函数f(x)的定义域为I,对于区间,若,x2∈D(x1<x2)满足f(x1)+f(x2)=1,则称区间D为函数f(x)的V区间(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间19.已知函数,其中.(1)求函数的定义域;(2)若函数的最大值为2.求a的值.20.设函数(1)写出函数的最小正周期及单调递减区间;(2)当时,函数的最大值与最小值的和为,求不等式的解集21.(1)化简:(2)求值:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】找中间量0或1进行比较大小,可得结果【详解】,所以,故选:A.【点睛】此题考查利用对数函数、指数函数的单调性比较大小,属于基础题2、B【解析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.3、A【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值.【详解】直线和同时平行于直线,,解得,故选A.【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题.4、D【解析】作出弧度角的正弦线、余弦线和正切线,利用三角函数线来得出、、的大小关系.【详解】作出弧度角的正弦线、余弦线和正切线如下图所示,则,,,其中虚线表示的是角的终边,,则,即.故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题.5、C【解析】由已知可得,故选C考点:集合的基本运算6、D【解析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确.7、B【解析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值【详解】由题是第四象限角,则故选B【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键8、C【解析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【详解】由图象可得:,代入可得:本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.9、B【解析】根据指对幂函数性质依次判断即可得答案.【详解】解:对于①,在上单调递增;对于②,在上单调递减;对于③,时,在上单调递减;对于④,在上单调递增;故在区间上单调递减的函数的序号是②③故选:B10、B【解析】根据指数型函数的性质,即可确定其定点.【详解】令得,所以,因此函数过点(4,3).故选B【点睛】本题主要考查函数恒过定点的问题,熟记指数函数的性质即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径12、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.13、##【解析】利用扇形面积公式进行计算.【详解】即,,由扇形面积公式得:.故答案为:14、【解析】根据集合的交集的概念得到.故答案为15、3【解析】由集合定义,及交集补集定义即可求得.【详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.16、【解析】由直线与圆相切可得圆心到直线距离等与半径,进而列式得出答案【详解】由题意得,,解得【点睛】本题考查直线与圆的位置关系,属于一般题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【点睛】关键点点睛:本题考查三角函数的应用,解题关键是利用表示出矩形的边长,从而得矩形面积.利用三角函数恒等变换公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求得最大值18、(1)证明详见解析;(2)a>1;(3)证明详见解析.【解析】(1)取特殊点可以验证;(2)利用的单调递减可以求实数a的取值范围;(3)先证f(x)在上存在零点,然后函数在区间[0,+∞)上仅有2个零点,f(x)在[π,+∞)上不存在零点,利用定义说明区间[π,+∞)不是函数f(x)的V区间.详解】(1)设x1,x2∈(0,2)(x1<x2)若f(x1)+f(x2)=1,则所以lgx1+lgx2=lgx1x2=0,x1x2=1,取,,满足定义所以区间(0,2)是函数的V区间(2)因为区间[0,a]是函数的V区间,所以,x2∈[0,a](x1<x2)使得因为在[0,a]上单调递减所以,,所以,a-1>0,a>1故所求实数a的取值范围为a>1(3)因为,,所以f(x)在上存在零点,又因为f(0)=0所以函数f(x)在[0,π)上至少存在两个零点,因为函数在区间[0,+∞)上仅有2个零点,所以f(x)在[π,+∞)上不存在零点,又因为f(π)<0,所以,f(x)<0所以,x2∈[π,+∞)(x1<x2),f(x1)+f(x2)<0即因此不存在,x2∈[π,+∞)(x1<x2)满足f(x1)+f(x2)=1所以区间[π,+∞)不是函数f(x)的V区间【点睛】本题考查了函数的性质,对新定义的理解,要求不仅好的理解能力,还要有好的推理能力.19、(1);(2).【解析】(1)根据对数的性质进行求解即可;(2)根据对数的运算性质,结合配方法、对数复合函数的单调性进行求解即可.【详解】(1)要使函数有意义,则有,解得,所以函数的定义域为.(2)函数可化.因为,所.因,所以,即,由,解得.20、(1)最小正周期为;递减区间为:;(2)【解析】(1)化函数为正弦型函数,求出它的最小正周期和单调递减区间;(2)根据时求得的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024公司人事的聘用合同
- 上海市进才实验中学2024-2025学年九年级上学期期中英语试题(解析版)
- 2024年区域销售专员聘用合同模板版B版
- 江南大学《房屋建筑学》2022-2023学年第一学期期末试卷
- 2024年医疗机构医疗设备采购与安装合同
- 2024年全球汽车零部件供应链合同
- 2024专业舞台化妆服务合作合同版B版
- 暨南大学《基础英语》2021-2022学年第一学期期末试卷
- 二零二四年度存量房买卖装修改造合同
- 济宁学院《和声学3》2021-2022学年第一学期期末试卷
- csgo比赛策划方案
- 树立正确的就业观剖析课件
- 预防标本采集错误
- 麻醉管理与术后脑功能障碍课件
- 地貌学智慧树知到课后章节答案2023年下西南大学
- 银行中层干部竞聘演讲课件
- 防砸玻璃检验报告
- 第7.1课《唐宋大诗人诗中的物候》(课件)-【中职专用】高二语文同步课件(高教版2023·职业模块)
- 通用电子嘉宾礼薄
- 四等水准测量自动生成表格
- 给高中生的知识讲座
评论
0/150
提交评论