




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省松原市油田第十一中学2023-2024学年高一数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,则的值是A.-24 B.-15C.-6 D.122.下列命题正确的是()A.若,则B.若,则C.若,则D.若,则3.若曲线与直线始终有交点,则的取值范围是A. B.C. D.4.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα5.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A. B.C. D.6.已知函数,若,,,则,,的大小关系为A. B.C. D.7.角的终边经过点,且,则()A. B.C. D.8.若,,则的值为A. B.C. D.9.设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.10.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是()A. B.C. D.11.设全集,集合,,则图中阴影部分表示的集合是()A. B.C. D.12.设分别是x轴和圆:(x-2)2+(y-3)2=1上的动点,且点A(0,3),则的最小值为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.命题“”的否定是__________14.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________15.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.16.计算:()0+_____三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知直线l经过点,其倾斜角为.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积.18.已知函数(1)判断函数在区间上的单调性,并用定义证明其结论;(2)求函数在区间上的最大值与最小值19.设函数的定义域为集合的定义域为集合(1)当时,求;(2)若“”是“”的必要条件,求实数的取值范围20.已知函数.(1)若在上单调递增,求的取值范围;(2)讨论函数的零点个数.21.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.22.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】∵函数,∴,故选C2、D【解析】由不等式性质依次判断各个选项即可.【详解】对于A,若,由可得:,A错误;对于B,若,则,此时未必成立,B错误;对于C,当时,,C错误;对于D,当时,由不等式性质知:,D正确.故选:D.3、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.4、B【解析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.5、D【解析】画出函数的图象,利用函数的图象,判断的范围,然后利用二次函数的性质求解的范围【详解】解:函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根且两根位于之间,由函数图象可知,.令,方程化为:,,,开口向下,对称轴为:,可知:的最大值为:,的最小值为:2故选:【点睛】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力,属于中档题6、C【解析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法则进行化简即可【详解】∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(209)<f(log39.1)<f(log310),即c<b<a,故选C【点睛】本题主要考查函数值的大小的比较,根据函数解析式判断函数的单调性和奇偶性是解决本题的关键7、A【解析】利用三角函数的定义可求得的值,再利用三角函数的定义可求得的值.【详解】由三角函数的定义可得,则,解得,因此,.故选:A.8、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础9、B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=lnx单调递增,所以,故选B10、A【解析】纵轴表示离家的距离,所以在出发时间为可知C,D错误,再由刚开始时速度较快,后面速度较慢,可根据直线的倾斜程度得到答案.【详解】当时间时,,故排除C,D;由于刚开始时速度较快,后面速度较慢,所以前段时间的直线的倾斜角更大.故选:A.【点睛】本题考查根据实际问题抽象出对应问题的函数图象,考查抽象概括能力,属于容易题.11、B【解析】由图中阴影部分可知对应集合为,然后根据集合的基本运算求解即可.【详解】解:由图中阴影部分可知对应集合为全集,2,3,4,,集合,,,3,,=,=故选:12、B【解析】取点A关于x轴的对称点C(0,-3),得到,最小值为.故答案为B.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】特称命题的否定.【详解】命题“”的否定是【点睛】本题考查特称命题的否定,属于基础题;对于含有量词的命题的否定要注意两点:一是要改换量词,即把全称(特称)量词改为特称(全称)量词,二是注意要把命题进行否定.14、7【解析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【详解】设圆是圆关于直线对称的圆,
可得,圆方程为,
可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,
此时的最小值为AB,
,圆的半径,
,
可得因此的最小值为7,
故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可15、【解析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【详解】依题意知:函数为奇函数且周期为2,则,,即.【点睛】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用16、【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式.故答案为:【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)由斜率,再利用点斜式即可求得直线方程;(2)由直线的方程,分别令为,得到纵截距与横截距,即可得到直线与两坐标轴所围成的三角形的面积.【详解】(1)直线方程为:,即.(2)由(1)令,则;令,则.所以直线与两坐标轴所围成的三角形的面积为:.【点睛】本题考查直线的点斜式方程,直线截距的意义,三角形的面积,属于基础题.18、(1)证明见解析;(2)最大值为;小值为【解析】(1)利用单调性的定义,任取,且,比较和0即可得单调性;(2)由函数的单调性即可得函数最值.试题解析:(1)解:在区间上是增函数.证明如下:任取,且,.∵,∴,即.∴函数在区间上是增函数.(2)由(1)知函数在区间上是增函数,故函数在区间上的最大值为,最小值为.点睛:本题考查利用函数的奇偶性求函数解析式,判断并证明函数的单调性,属于中档题目.证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:和0比较;(4)下结论19、(1)(2)【解析】(1)求出集合A,B,根据集合的补集、交集运算求解即可;(2)由必要条件转化为集合间的包含关系,建立不等式求解即可.【小问1详解】由,解得或,所以当时,由,即,解得,所以.所以小问2详解】由(1)知,由,即,解得,所以因为“”是“”的必要条件,所以.所以,解得所以实数的取值范围是20、(1)(2)当时,有一个零点;当时,且当时,有两个零点,当时,有一个零点【解析】(1)由、都是单调递增函数可得的单调性,利用单调性可得答案;(2)时有一个零点;当时,利用单独单调性求得,分和讨论可得答案.【小问1详解】当时,单调递增,当时,单调递增,若在上单调递增,只需,.【小问2详解】当时,,此时,即,有一个零点;当时,,此时在上单调递增,,若,即,此时有一个零点;若,即,此时无零点,故当时,有两个零点,当时,有一个零点21、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【点睛】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围.22、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生跳水课件设计
- 2025内蒙古航投实业有限公司招聘6人笔试历年参考题库附带答案详解
- 小学生课件藏文图片
- 机场无线电台操纵修理工理论学习手册练习试题及答案
- 聚氯乙烯装置操作工职业技能鉴定经典试题含答案
- 平版印刷员技能测试题库及答案
- 药理毒理试验员公司招聘笔试题库及答案
- 铁合金原料工职业技能模拟试卷含答案
- 继电器装配工基础技能培训手册
- 玻璃钢制品检验员实操任务书
- 《大数据习题库汇总-机器学习》复习题库(含答案)
- 苏教版数学一年级上册-全册配套课堂作业
- 交通导行方案样稿
- 《建筑工程设计文件编制深度规定》(2023年版)
- 贵州贵阳银行招聘笔试(六盘水地区)上岸提分题库3套【500题带答案含详解】
- 社区获得性肺炎的护理查房
- GB/T 35051-2018选煤厂洗水闭路循环等级
- 日常生活活动能力评估大全
- 猪链球菌病及其防控课件
- 个人简历电子版
- 线性代数期末考试试题(含答案)
评论
0/150
提交评论