第03讲 勾股定理的应用(原卷版)_第1页
第03讲 勾股定理的应用(原卷版)_第2页
第03讲 勾股定理的应用(原卷版)_第3页
第03讲 勾股定理的应用(原卷版)_第4页
第03讲 勾股定理的应用(原卷版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第03讲勾股定理的应用1.利用勾股定理及逆定理解决生活中的实际问题(梯子滑动、风吹莲动、折竹抵地、台风和爆破、航行和信号塔、速度等问题).2.解决实际问题时,要善于构造直角三角形,把实际问题抽象成几何问题.知识点01勾股定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.题型01求梯子滑落高度【典例1】(2023秋·吉林长春·八年级统考期末)如图,一架长的梯子斜靠在一竖直的墙上,,这时,梯子的底端到墙底的距离为.

(1)求此时梯子的顶端距地面的高度.(2)如果梯子的顶端沿墙下滑,那么梯子底端外移吗?通过计算说明你的结论.【变式1】(2023春·宁夏吴忠·八年级校考期中)如图,将长为25米长的云梯斜靠在建筑物的侧墙上,长7米.(1)求梯子上端到墙的底端E的距离的长;(2)如果梯子的顶端A沿墙下滑4米,则梯脚B将外移多少米?【变式2】(2023·全国·八年级假期作业)如图梯子斜靠在竖直的墙,长为,为.(1)求梯子的长.(2)梯子的顶端A沿墙下滑到点C,梯子底端B外移到点D,求的长.题型02求旗杆高度【典例1】(2023春·广东汕头·八年级统考期末)如图,某攀岩中心攀岩墙的顶部处安装了一根安全绳,让它垂到地面时比墙高多出了米,教练把绳子的下端拉开米后,发现其下端刚好接触地面(即米),,求攀岩墙的高度.【变式1】(2022春·八年级单元测试)思源中学八(3)班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝的高度,他们进行了如下操作:(1)测得的长度为米;(2)根据手中剩余线的长度计算出风筝线的长为米;(3)牵线放风筝的小明身高米,求风筝的高度.【变式2】(2023春·江西宜春·八年级统考期中)一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A后,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.(1)求旗杆的高度OM;(2)玛丽在荡绳索过程中离地面的最低点的高度MN.题型03求小鸟飞行距离【典例1】(2023春·广西贵港·八年级统考期中)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?【变式1】(2023春·广东东莞·八年级校考阶段练习)如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是________.【变式2】(2023春·广西防城港·八年级统考阶段练习)如图,有两棵树,一棵树高AC是10米,另一棵树高BD是4米,两树相距8米(即CD=8米),一只小鸟从一棵树的树梢A点处飞到另一棵树的树梢B点处,则小鸟至少要飞行多少米?题型04求大树折断前的高度【典例1】(2023春·江西南昌·八年级南昌市外国语学校校考期末)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”题意是:一根竹子原高丈(丈尺),中部有一处折断,竹梢触地面处离竹根尺,试问折断处离地面多高?

【变式1】(2023春·湖南娄底·八年级统考阶段练习)如图,一棵大树在一次强台风中在离地某处折断倒下,树尖落在离树底部12米处,已知原树高是18米,你能求出大树在离地多少米的位置折断吗?

【变式2】(2023春·全国·八年级期中)如图,一根垂直于地面的旗杆高,因刮大风旗杆从点处折断,顶部着地且离旗杆底部的距离.(1)求旗杆折断处点距离地面的高度;(2)工人在修复的过程中,发现在折断点的下方的点处,有一明显裂痕,若下次大风将修复好的旗杆从点处吹断,旗杆的顶点落在水平地面上的处,形成一个直角,请求出的长.题型05解决水杯中筷子问题【典例1】(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是,高是,上底面中心有一个小圆孔,则一条长的直吸管露在罐外部分的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是(

A. B. C. D.【变式1】(2023·江苏·模拟预测)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为(

)A.10尺 B.12尺 C.13尺 D.15尺【变式2】(2023春·内蒙古通辽·八年级校考期中)如图,将一根长的筷子,置于底面直径为,高为的圆柱形水杯中,设筷子露在杯子外面的长度是,则h的取值范围是________.题型06解决航海问题【典例1】(2023·宁夏吴忠·统考二模)如图,一艘轮船自西向东航行,航行到处测得小岛位于北偏东方向上,继续向东航行海里到达点处,测得小岛在轮船的北偏东方向上,此时轮船与小岛的距离为____海里.【变式1】(2023春·广东珠海·八年级珠海市前山中学校考期中)如图,某港口O位于东西方向的海岸线上,有甲,乙两艘轮船同时离港,各自沿着一固定方向航行,甲船沿北偏西方向航行,每小时30海里,乙船沿北偏东方向航行,每小时40海里,2小时后,两船分别到达A,B处,此时两船相距多少海里?

【变式2】(2022秋·广东深圳·八年级深圳市高级中学校考期中)如图所示,一艘轮船由A港口沿着北偏东的方向航行到达B港口,然后再沿北偏西方向航行到达C港口.(1)求A,C两港口之间的距离;(结果保留根号)(2)C港口在A港口的什么方向.题型07求台阶上地毯长度【典例1】(2023春·山西吕梁·八年级统考期中)如图是楼梯的示意图,楼梯的宽为5米,米,米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为(

)A.65 B.85 C.90 D.150【变式1】(2023春·湖南张家界·八年级统考期中)如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为(

)A.5米 B.6米 C.7米 D.8米【变式2】(2023春·重庆九龙坡·八年级重庆实验外国语学校校考期中)某会展中心在会展期间准备将高5m、长13m、宽2m的楼道铺上地毯,已知地毯每平方米30元,请你帮助计算一下,铺完这个楼道需要_______________元.题型08判断汽车是否超速【典例1】(2023春·广东汕头·八年级统考期末)某条道路限速,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方的C处,过了,小汽车到达B处,此时测得小汽车与车速检测仪间的距离为.

(1)求的长;(2)这辆小汽车超速了吗?【变式1】(2023春·八年级课时练习)如图,一辆小汽车在一条限速的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A的正前方处的C点,过了后,测得小汽车所在的B点与车速检测仪A之间的距离为.(1)求B,C间的距离.(2)这辆小汽车超速了吗?请说明理由.【变式2】(2023春·全国·八年级专题练习)“交通管理条例第三十五条”规定:小汽车在城市街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪距离130米.(1)求小汽车6秒走的路程;(2)求小汽车每小时所走的路程,并判定小汽车是否超速?题型09判断是否受台风影响【典例1】(2023·全国·八年级假期作业)6号台风“烟花”风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为,,又,经测量,距离台风中心及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为千米/时,则台风影响该海港持续的时间有多长?【变式1】(2023春·全国·八年级专题练习)如图,某沿海城市A接到台风警报,在该市正南方向的B处有一台风中心正以的速度向方向移动,已知城市A到的距离,那么:(1)台风中心经过多长时间从B点移到D点?(2)如果在距台风中心的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必须在接到台风警报后的几小时内撤离(撤离速度为)最好选择什么方向?【变式2】(2023春·湖南郴州·八年级校考阶段练习)如图,有一辆环卫车沿公路由点A向点B行驶,已知点C为一所学校,且点C与直线上两点A,B的距离分别为200m和150m,,环卫车周围以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若环卫车噪声影响该学校持续的时间有2min,求环卫车的行驶速度为多少?题型10求最短路径【典例1】(2023春·黑龙江齐齐哈尔·八年级校联考阶段练习)有一圆柱形油罐,如图,要从点A环绕油罐建梯子,正好到A点的正上方点B,问梯子最短要多少米?(已知油罐底面周长是12米,高是5米)【变式1】(2023春·八年级单元测试)如图,在长方体中,点E是棱的中点,已知cm,cm,cm.一只小虫从A点出发沿长方体的表面到E点处觅食,求小虫爬行的最短距离.【变式2】(2023春·全国·八年级专题练习)问题情境:如图①,一只蚂蚁在一个长为80cm,宽为50cm的长方形地毛毯上爬行,地毯上堆放着一根正三棱柱的木块,它的侧棱平行且等于场地宽,木块从正面看是一个边长为20cm的等边三角形.求一只蚂蚁从点A处到达点C处需要走的最短路程.(1)数学抽象:将蚂蚁爬行过的木块的侧面“拉直”“铺平”,“化曲为直”.请在图②中用虚线补全木块的侧面展开图,并用实线连接.(2)线段的长即蚂蚁从点处到达点处需要走的最短路程,依据是_____.(3)问题解决:如图②,展开图中_____,_____.(4)这只蚂蚁从点处到达点处需要走的最短路程是_____.题型11选址使到两地距离相等【典例1】(2023春·江西赣州·八年级校考期中)为了丰富少年儿童的业余生活,某社区要在如图中所在的直线上建一图书室,本社区有两所学校,分别在点C和点D处,于点A,于点B,已知,问:图书室E应建在距点A多少千米处,才能使它到两所学校的距离相等?

【变式1】(2023春·上海·八年级专题练习)如图,笔直公路上、两点相距千米,、为两居民区,于,于,已知千米,千米,现要在公路段上建一超市,使、两居民区到的距离相等,则超市应建在离处多远处.【变式2】(2023春·八年级课时练习)为了丰富少年儿童的业余生活,某社区要在如图中的所在的直线上建一图书室,本社区有两所学校所在的位置在点和点处,于,于,已知,,,,试问,图书室应该建在距点多少知处.才能使它到两所学校的距离相等?一、选择题1.(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面处折断,倒下后树顶端着地点A距树底端B的距离为,这棵大树在折断前的高度为(

A. B. C. D.2.(2023·河北衡水·校联考二模)如图,点P为观测站,一艘巡航船位于观测站P的南偏西方向的点A处,一艘渔船在观测站P的南偏东方向的点B处,巡航船和渔船与观测站P的距离分别为45海里、60海里.现渔船发生紧急情况无法移动,巡航船以30海里/小时的速度前去救助,至少需要的时间是(

A.小时 B.2小时 C.小时 D.4小时3.(2023春·福建莆田·八年级统考期中)如图所示的是一个长方体笔筒,底面的长、宽分别为和,高为,将一支长为的签字笔放入笔筒内,则签字笔露在笔筒外的的长度最少为(

A. B. C. D.4.(2023·贵州贵阳·统考二模)勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题的最重要工具,也是数形结合的纽带之一.如图,秋千静止时,踏板离地的垂直高度BE=1m,将它往前推6m至C处时(即水平距离CD=6m),踏板离地的垂直高度CF=4m,它的绳索始终拉直,则绳索AC的长是(

A.m B.m C.6m D.m5.(2023春·四川德阳·八年级四川省德阳市第二中学校校考阶段练习)如图,长方体的长,宽,高,点M在上,且,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是(

A. B. C. D.二、填空题6.(2023春·天津滨海新·八年级校考期中)如图,从电杆上离地面的处向地面拉一条长为的钢缆,则地面钢缆到电线杆底部的距离是______.7.(2023春·湖南长沙·八年级校联考期中)如图,有两棵树,一棵高米,另一棵高米,两树相距米一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行______米

8.(2023春·八年级课时练习)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A处偏离欲到达地点B处40m,结果他在水中实际游的路程比河的宽度多10m.该河的宽度BC为_____米.9.(2023春·湖北武汉·八年级统考期中)如图,铁路和公路在点处交汇,,公路上处距离点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路上沿方向以72千米/小时的速度行驶时,处受到噪音影响的时间为________秒.10.(2023·四川广安·统考中考真题)如图,圆柱形玻璃杯的杯高为,底面周长为,在杯内壁离杯底的点处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿,且与蜂蜜相对的点处,则蚂蚁从外壁处到内壁处所走的最短路程为___________.(杯壁厚度不计)

三、解答题11.(2023春·广东惠州·八年级阶段练习)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?12.(2023春·黑龙江大庆·七年级校联考期中)如图,铁路上,两点相距,,为两村庄,于点,于点,已知,,现在要在铁路上建一个土特产品收购站,使得,两村到站的距离相等,则站应建在离站多少处?

13.(2023春·广东广州·八年级校考期中)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?14.(2023春·广东广州·八年级华南师大附中校考期中)如图,A、B两个村子在笔直河岸的同侧,A、B两村到河岸的距离分别为,,,现在要在河岸上建一水厂E向A、B两村输送自来水,要求水厂E到A、B两村的距离之和最短.(1)在图中作出水厂E的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E到A、B两村的距离之和的最小值.15.(2023·全国·八年级假期作业)如图,一架长10米的梯子,斜靠在竖直的墙上,这时梯子底端离墙6米(1)此时梯子顶端A离地面多少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论