版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版数学七年级下学期期末测试卷学校________班级________姓名________成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,最小的数是()A. B.0 C.1 D.2.若,则下列式子错误的是().A. B. C. D.3.在下列四项调查中,方式正确的是A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生视力情况,采用抽样调查的方式4.如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB的度数是()A.26° B.44° C.46° D.66°5.若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4 B.m=–2018,n=±4C.m=±2018,n=–4 D.m=–2018,n=46.对于任意实数m,点P(m-2,9-3m)不可能()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A.50° B.60° C.70° D.80°8.若满足方程组的与互为相反数,则的值为()A.11 B.-1 C.1 D.-119.若关于x的不等式组式在实数范围内有解,则a的取值范围为()A.a>0 B.a≥0 C.a<0 D.a≤010.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132° B.134° C.136° D.138°11.某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有()A.44个 B.45个 C.104个 D.105个12.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A.(505,504) B.(505,-504) C.(-504,504) D.(-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13.的相反数是____;|-3|=____.14.如图,直线,直线分别交,于点,,平分线交直线于点,若,则的度数是_________.15.求___________.16.当x____时,代数式+1的值不大于-1的值.17.若点A(-3,m+1)在第二象限的角平分线上,则m=_______.18.,是平面直角坐标系中的任意两点,我们把叫做P1,P2两点间的“直角距离”,记作d(P1,P2);比如:点P(2,-4),Q(1,0),则d(P,Q)=,已知Q(2,1),动点P(x,y)满足d(P,Q)=3,且x,y均为整数,则满足条件的点P有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(1)(2)20.解不等式组,并把解集数轴上表示出来.21.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22.如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23.已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点,请回答下列问题:
(1)在坐标系内描出点A,B,C位置.(2)画出关于直线x=-1对称的,并写出各点坐标.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24.“绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E.F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,最小的数是()A. B.0 C.1 D.【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:,最小的数为:.故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2.若,则下列式子错误的是().A. B. C. D.【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x>y,
则有x-3>y-3;;-2x<-2y;3-x<3-y故选D.【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3.在下列四项调查中,方式正确的是A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式【答案】D【解析】【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB度数是()A.26° B.44° C.46° D.66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5.若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4 B.m=–2018,n=±4C.m=±2018,n=–4 D.m=–2018,n=4【答案】D【解析】【分析】依据二元一次方程的定义求解即可.【详解】解:是关于x,y的二元一次方程,,解得:、,故选D.【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键依据二元一次方程的定义求解即可.6.对于任意实数m,点P(m-2,9-3m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A、当点在第一象限时,解得2<m<3,故选项不符合题意;B、当点第二象限时,解得m<3,故选项不符合题意;C、当点在第三象限时,,不等式组无解,故选项符合题意;D、当点在第四象限时,解得m>0,故选项不符合题意.故选:C.【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A.50° B.60° C.70° D.80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°)÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8.若满足方程组的与互为相反数,则的值为()A.11 B.-1 C.1 D.-11【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y=-x,
代入方程组得:,
消去x得:,即3m+9=4m-2,
解得:m=11.
故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.若关于x的不等式组式在实数范围内有解,则a的取值范围为()A.a>0 B.a≥0 C.a<0 D.a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132° B.134° C.136° D.138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有()A.44个 B.45个 C.104个 D.105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得
5500×60+5000(x-60)>550000
∴5000(x-60)>5500×40
x-60>44
∴x>104
答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A.(505,504) B.(505,-504) C.(-504,504) D.(-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13.的相反数是____;|-3|=____.【答案】(1).(2).3-【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解.详解:的相反数是;因为,所以|-3|=-(),故答案为(1).(2).3-.点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14.如图,直线,直线分别交,于点,,的平分线交直线于点,若,则的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50,进而得出答案.【详解】∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50,∴∠BAD=∠CAD=50,∴∠2=180−50−50=80故答案为:80.【点睛】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50是解题关键.15.求___________.【答案】126【解析】【分析】两式相加求出=5,两式相减求出=1,代入即可求解.【详解】解,①+②得5a+5b=25∴=5,①-②得=1∴53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16.当x____时,代数式+1的值不大于-1的值.【答案】≥-1【解析】【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得+1≤-1解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x的范围,关键是根据题目的不等关系列不等式.17.若点A(-3,m+1)在第二象限的角平分线上,则m=_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m=2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18.,是平面直角坐标系中的任意两点,我们把叫做P1,P2两点间的“直角距离”,记作d(P1,P2);比如:点P(2,-4),Q(1,0),则d(P,Q)=,已知Q(2,1),动点P(x,y)满足d(P,Q)=3,且x,y均为整数,则满足条件的点P有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得,;②x−2=±2,y−1=±1,解得,,,;③x−2=±1,y−1=±2,解得,,,;④x−2=0,y−1=±3,解得,.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(1)(2)【答案】(1)(2)【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)==(2)解:①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20.解不等式组,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×=120°,故答案为120;③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC∥EG得出∠E=∠1=50°,再由AF∥DE可知∠AFG=∠E=50°;(2)作AM∥BC,由平行线的传递性可知AM∥EG,故∠FAM=∠AFG,再根据AM∥BC可知∠QAM=∠Q,故∠FAQ=∠AFM+∠FAQ,再根据AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=80°,根据AM∥BC即可得出结论.【详解】(1)∵BC∥EG,∴∠E=∠1=50°.∵AF∥DE,∴∠AFG=∠E=50°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠FAM=∠AFG=50°.∵AM∥BC,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ平分∠FAC,∴∠QAC=∠FAQ=65°,∴∠MAC=∠QAC+∠QAM=80°.∵AM∥BC,∴∠ACB=∠MAC=80°.考点:平行线的性质.23.已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点,请回答下列问题:
(1)在坐标系内描出点A,B,C的位置.(2)画出关于直线x=-1对称的,并写出各点坐标.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A、B、C三点位置,然后再连接即可;(2)首先确定A、B、C三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC即为所求;(2)如图:即为所求;各点坐标分别为:,,;(3)解:设P(0,y),∵A(-2,1),B(3,1),∴AB=5,∴,∵=10,∴,∴,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24.“绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得解得答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得解得18≤a<20.∵a为正整数,∴a=18或∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商业智能分析报告服务合同
- 2024年合同指南:英文合同要素全解析
- 银行委托存款合同
- 2024年企业通讯设备购销合同
- 草地植被恢复与生态平衡
- 羽毛球比赛详细策划方案
- 数字系统课程设计matlab
- 中医药企业发展战略方案
- 公共交通乘客服务优化方案
- 2024至2030年中国防寒帘数据监测研究报告
- 上海市普陀区2024-2025学年六年级(五四学制)上学期期中语文试题
- 2024黔东南州事业单位第二批遴选人员调减遴选历年高频难、易错点500题模拟试题附带答案详解
- 24秋国家开放大学《当代中国政治制度》形考任务1-4参考答案
- 小学学校信息化管理章程
- 封条模板A4直接打印版
- 旅游线路设计实务 理论知识篇
- 工程地质学—地貌
- 应聘登记表(CMHR
- 《海报设计》PPT课件(完整版)
- 吉林省义务教育阶段新课程计划表(新)
- 大学的学习方法PowerPoint 演示文稿
评论
0/150
提交评论