江苏省张家港市外国语学校2023年高一数学第一学期期末考试试题含解析_第1页
江苏省张家港市外国语学校2023年高一数学第一学期期末考试试题含解析_第2页
江苏省张家港市外国语学校2023年高一数学第一学期期末考试试题含解析_第3页
江苏省张家港市外国语学校2023年高一数学第一学期期末考试试题含解析_第4页
江苏省张家港市外国语学校2023年高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省张家港市外国语学校2023年高一数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如图,在正三棱锥中,,点为棱的中点,则异面直线与所成角的大小为()A.30° B.45°C.60° D.90°2.设实数满足,函数的最小值为()A. B.C. D.63.已知,则()A.-4 B.4C. D.4.若,是第二象限的角,则的值等于()A. B.7C. D.-75.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1006.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是()A. B.C. D.7.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定8.在梯形中,,,.将梯形绕所在直线旋转一周而形成的曲面所围成的几何体的体积为A. B.C. D.9.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm310.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.11.函数的部分图象如图所示,则的值分别是()A. B.C. D.12.已知,若方程有四个不同的实数根,,,,则的取值范围是()A.(3,4) B.(2,4)C.[0,4) D.[3,4)二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数是奇函数,当时,,若,则m的值为______.14.给出下列四个结论函数的最大值为;已知函数且在上是减函数,则a的取值范围是;在同一坐标系中,函数与的图象关于y轴对称;在同一坐标系中,函数与的图象关于直线对称其中正确结论序号是______15.已知函数,若存在,使得,则的取值范围为_____________.16.若坐标原点在圆的外部,则实数m的取值范围是___三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,,.(1)若,解关于方程;(2)设,函数在区间上的最大值为3,求的取值范围;(3)当时,对任意,函数在区间上的最大值与最小值的差不大于1,求的取值范围.18.已知集合,(1)当时,求;(2)若,求19.设函数的定义域为,函数的定义域为.(1)求;(2)若,且函数在上递减,求的取值范围.20.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由21.已知函数的图象关于原点对称(1)求实数b的值;(2)若对任意的,有恒成立,求实数k的取值范围22.已知.(1)求的最小正周期;(2)求的单调增区间;(3)当时,求的值域.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】取BC的中点E,∠DFE即为所求,结合条件即求.【详解】如图取BC的中点E,连接EF,DE,则EF∥AB,∠DFE即为所求,设,在正三棱锥中,,故,∴,∴,即异面直线与所成角的大小为.故选:C.2、A【解析】将函数变形为,再根据基本不等式求解即可得答案.详解】解:由题意,所以,所以,当且仅当,即时等号成立,所以函数的最小值为.故选:A【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方3、C【解析】已知,可得,根据两角差的正切公式计算即可得出结果.【详解】已知,则,.故选:C.4、B【解析】先由同角三角函数关系式求出,再利用两角差的正切公式即可求解.【详解】因为,是第二象限的角,所以,所以.所以.故选:B5、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.6、C【解析】由已知得,,且,解之讨论k,可得选项.【详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B;又,且,解得,当时,不满足,当时,符合题意,当时,符合题意,当时,不满足,故C正确,D不正确,故选:C.【点睛】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.7、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D8、C【解析】由题意可知旋转后的几何体如图:

直角梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积.9、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.10、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化11、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.12、D【解析】利用数形结合可得,结合条件可得,,,且,再利用二次函数的性质即得.【详解】由方程有四个不同的实数根,得函数的图象与直线有四个不同的交点,分别作出函数的图象与直线由函数的图象可知,当两图象有四个不同的交点时,设与交点的横坐标为,,设,则,,由得,所以,即设与的交点的横坐标为,,设,则,,且,所以,则故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数14、【解析】根据指数函数单调性可得二次函数的最值,求得的最小值为;根据对数函数的图象与性质,求得a的取值范围是;同一坐标系中,函数与的图象关于x轴对称;同一坐标系中,函数与的图象关于直线对称【详解】对于,函数的最大值为1,的最小值为,错误;对于,函数且在上是减函数,,解得a的取值范围是,错误;对于,在同一坐标系中,函数与的图象关于x轴对称,错误;对于,在同一坐标系中,函数与的图象关于直线对称,正确综上,正确结论的序号是故答案为【点睛】本题考查了指数函数与对数函数的性质与应用问题,是基础题15、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.16、【解析】方程表示圆,得,根据点在圆外,得不等式,解不等式可得结果.【详解】圆的标准方程为,则,若坐标原点在圆的外部,则,解得,则实数m的取值范围是,故答案为:【点睛】本题考查圆的一般方程,考查点与圆的位置关系的应用,属于简单题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2);(3).【解析】(1)将代入函数的解析式,并求出函数的定义域,利用对数的运算法则可解出方程;(2)当时,,分、和三种情况讨论,去绝对值,分析函数在区间上的单调性,结合该函数在区间上的最大值为,可求出实数的取值范围;(3)利用对数的运算性质可得出,可知该函数在区间上为减函数,由题意得出对任意的恒成立,求出在上的最大值,即可得出实数的取值范围.【详解】(1)当时,,则,定义域为.由,可得,可得,解得或(舍去),因此,关于的方程的解为;(2)当时,.当时,对任意的恒成立,则,此时,函数在区间上为增函数,,合乎题意;当时,对任意的恒成立,则,此时,函数在区间上为减函数,,解得,不合乎题意;当时,令,得,此时,所以,函数在区间上为减函数,在区间上为增函数.,,由于,所以,解得.此时,.综上所述,实数的取值范围是;(3),由于内层函数在区间为减函数,外层函数为增函数,所以,函数在区间上为减函数,所以,,由题意可得,可得,所以,.①当时,;②当时,令,设,可得.下面利用定义证明函数在区间上的单调性,任取、且,即,,,,,,即,所以,函数在区间上单调递减,当时,函数取得最大值.综上所述,函数在上的最大值为,.因此,实数的取值范围是.【点睛】本题考查对数方程的求解、考查了利用带绝对值函数的最值求参数,同时也考查了函数不等式恒成立问题,考查运算求解能力,属于中等题.18、(1)(2)【解析】(1)化简求得集合,根据补集的概念运算可得结果;(2)由,根据,求出,再求出,计算可求出结果.【小问1详解】由题意得:当时,所以【小问2详解】由题意知:又所以方程的一个根为4,解得,所以,符合题设条件,故19、(1);(2).【解析】(1)先求出集合,,然后由补集和并集的定义求解即可;(2)先利用交集求出集合,然后利用二次函数的单调性分析求解即可【详解】解:(1)由得,∴,由得,∴,∴,∴.(2)∵,,∴.由在上递减,得,即,∴.20、(1)或;(2);(3)不存在.【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【详解】(1)直线斜率存在时,设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得.所以直线方程为,即.当的斜率不存在时,的方程为,经验证也满足条件即直线的方程为或.(2)由于,而弦心距,所以.所以恰为的中点故以为直径的圆的方程为.(3)把直线代入圆的方程,消去,整理得.由于直线交圆于两点,故,即,解得.则实数的取值范围是设符合条件的实数存在,由于垂直平分弦,故圆心必在上.所以的斜率,而,所以.由于,故不存在实数,使得过点的直线垂直平分弦.【点睛】考查了点到直线距离公式,考查了圆方程计算方法,考查了直线斜率计算方法,难度偏难21、(1)-1(2)【解析】(1)由得出实数b的值,再验证奇偶性即可;(2)由结合函数的单调性解不等式,结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论