版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州苏州星海中学2023年数学高一上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若,则等于A. B.C. D.2.的值是A.0 B.C. D.13.若sinα=-,且α为第三象限的角,则cosα的值等于()A. B.C. D.4.已知集合,则()A. B.或C. D.或5.定义在的函数,已知是奇函数,当时,单调递增,若且,且值()A.恒大于0 B.恒小于0C.可正可负 D.可能为06.直线与圆相切,则的值为()A. B.C. D.7.下列四个图形中,不是以x为自变量的函数的图象是()A B.C. D.8.某几何体的三视图如图所示,则该几何体的体积为()A.8π B.16πC. D.9.设集合,,则A. B.C. D.10.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.不等式的解集为_________________.12.命题“,”的否定是___________.13.已知函数f(x)是定义在R上的奇函数,当时,,则函数的零点个数为______14.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________15.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数是定义域为上的奇函数,且(1)求的解析式;(2)用定义证明:在上增函数.17.已知函数的最小值为1.(1)求的值;(2)求函数的最小正周期和单调递增区间.18.已知,.(1)求的值;(2)求的值.19.设函数的定义域为,函数的定义域为.(1)求;(2)若,且函数在上递减,求的取值范围.20.某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.21.求满足下列条件的直线方程:(要求把直线的方程化为一般式)(1)经过点,且斜率等于直线的斜率的倍;(2)经过点,且在x轴上截距等于在y轴上截距的2倍
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题2、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B3、B【解析】先根据为第三象限角,可知,再根据平方关系,利用,可求的值【详解】解:由题意,为第三象限角,故选.【点睛】本题以三角函数为载体,考查同角三角函数的平方关系,解题时应注意判断三角函数的符号,属于基础题.4、C【解析】直接利用补集和交集的定义求解即可.【详解】由集合,可得:或,故选:C.【点睛】关键点点睛:本该考查了集合的运算,解决该题的关键是掌握补集和交集的定义..5、A【解析】由是奇函数,所以图像关于点对称,当时,单调递增,所以当时单调递增,由,可得,,由可知,结合函数对称性可知选A6、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D7、C【解析】根据函数中每一个自变量有且只有唯一函数值与之对应,结合函数图象判断符合函数定义的图象即可.【详解】由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.故选:C8、A【解析】由三视图还原直观图得到几何体为高为4,底面半径为2圆柱体的一半,即可求出体积.【详解】由三视图知:几何体直观图为下图圆柱体:高为h=4,底面半径r=2圆柱体的一半,∴,故选:A9、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.10、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、或.【解析】利用一元二次不等式的求解方法进行求解.【详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.12、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”13、10【解析】将原函数的零点转化为方程或的根,再作出函数y=f(x)的图象,借助图象即可判断作答.【详解】函数的零点即方程的根,亦即或的根,画出函数y=f(x)的图象和直线,如图所示,观察图象得:函数y=f(x)的图象与x轴,直线各有5个交点,则方程有5个根,方程也有5个根,所以函数的零点有10个.故答案为:1014、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.15、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)证明见解析.【解析】(1)利用奇函数可求,然后利用可求,从而可得解析式;(2)先设量,作差,变形,然后判定符号,可得单调性.【详解】(1)因为为奇函数,所以,即;因为,所以,即;所以.为奇函数综上,(2)证明:任取,设,;因为,,所以,,所以,故在上是增函数.【点睛】本题主要考查函数解析式的求解和单调性的证明,明确函数单调性的证明步骤是求解的关键,侧重考查数学抽象和逻辑推理的核心素养.17、(1)3;(2)【解析】⑴将最小值代入函数中求解即可得到的值;⑵根据正弦函数的图象和性质求得函数的最小正周期和单调递增区间解析:(1)由已知得,解得.(2)的最小正周期为.由,解得,.所以的递增区间是.18、(1);(2).【解析】(1)利用诱导公式直接化简即可,然后弦化切;(2)由(1)知,,对齐次式进行弦化切求值.【详解】(1)∵而,∴∵,∴,∴,∴.(2)..【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值19、(1);(2).【解析】(1)先求出集合,,然后由补集和并集的定义求解即可;(2)先利用交集求出集合,然后利用二次函数的单调性分析求解即可【详解】解:(1)由得,∴,由得,∴,∴,∴.(2)∵,,∴.由在上递减,得,即,∴.20、24【解析】由题意得:,所以时,.考点:函数及其应用.21、(1);(2)或【解析】(1)由题意可得的斜率为,即可得所求直线的斜率,代入点斜式方程,即可得直线的方程,化简整理,即可得答案.(2)当直线不过原点时,设直线在y轴截距为a,根据直线方程的截距式,代入点坐标,即可得直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 寒假社会实践报告护理
- 安全不乱吃小药丸
- 共享单车行业报告:共享助力车与换电服务
- 山风景名胜区旅游规划
- 最常见的临床外科手术英语
- 电子商务大学生未来规划
- 国家开放大学《农业微生物学》形考任务1-3参考答案
- 2025年高三二轮总复习化学考前回归 下篇 类型5 有机化学实验
- 幼儿园中小学生元旦假期安全教育课件
- 三菱FX系列PLC原理及应用 课件 第8章可编程控制系统设计及应用
- 向最高检察院提起申诉书范文
- 院长在考研动员会上讲话
- 刻意训练:如何成为知识管理高手
- 授权:如何激发全员领导力
- 反洗钱试题和答案
- 直肠阴道瘘疑难病例讨论专家讲座
- 体育-蹲踞式起跑 教案
- 2023超星尔雅《创新思维训练》王竹立 期末考试答案
- 输液港护理小讲课
- 内保条例讲解文稿课件
- 国家开放大学《人文英语4》边学边练参考答案
评论
0/150
提交评论