湖北省黄冈市荆州中学校2024届高一数学第一学期期末调研试题含解析_第1页
湖北省黄冈市荆州中学校2024届高一数学第一学期期末调研试题含解析_第2页
湖北省黄冈市荆州中学校2024届高一数学第一学期期末调研试题含解析_第3页
湖北省黄冈市荆州中学校2024届高一数学第一学期期末调研试题含解析_第4页
湖北省黄冈市荆州中学校2024届高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈市荆州中学校2024届高一数学第一学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知角与角的终边关于直线对称,且,则等于()A. B.C. D.2.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.3.如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围是()A. B.C. D.4.由直线上的点向圆作切线,则切线长的最小值为()A.1 B.C. D.35.若,则()A B.C. D.6.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3C.92cm3 D.84cm37.某三棱锥的三视图如图所示,则该三棱锥的体积是A. B.C. D.8.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为,则原梯形的面积为()A.2 B.C.2 D.49.在中,“角为锐角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台11.函数的值域是A. B.C. D.12.已知集合,则=A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知,则____________.(可用对数符号作答)14.若函数在区间内为减函数,则实数a的取值范围为___________.15.设x,.若,且,则的最大值为___16.已知圆,则过点且与圆C相切的直线方程为_____三、解答题(本大题共6小题,共70分)17.,,且,,且为偶函数(1)求;(2)求满足,的的集合18.已知函数f(x)=(1)求f(x)的最小正周期;(2)当x∈[-π6,19.化简并求值(1)求的值.(2)已知,且是第三象限角,求的值.20.如图所示,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.21.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.22.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.表1个人所得税税率表(执行至2018年12月31日)级数全年应纳税所得额所在区间(对应免征额为42000)税率(%)速算扣除数13021012603206660425X5303306063566060745162060表2个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额60000)税率(%)速算扣除数130210252032016920425319205305292063585920745181920(1)小王在某高新技术企业工作,全年税前收入为180000元.执行新税法后,小王比原来每年少交多少个人所得税?(2)有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.①请计算表1中的数X;②假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】先在角终边取一点,利用角与角的终边关于直线对称写出对称点的坐标,即可求得,进而求得.【详解】由知角终边在第一或第二象限,在终边上取一点或,又角与角的终边关于直线对称,故角的终边必过点或,故,则.故选:A.2、A【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A3、C【解析】由已知可得.再由由点在圆内部或圆上可得.由此可解得点在以和为端点的线段上运动.由表示以和为端点的线段上的点与坐标原点连线的斜率可得选项【详解】函数恒过定点.将点代入直线可得,即由点在圆内部或圆上可得,即.或.所以点在以和为端点的线段上运动表示以和为端点的线段上的点与坐标原点连线的斜率.所以,.所以故选:C【点睛】关键点点睛:解决本题类型的问题,关键在于由已知条件得出所满足的可行域,以及明确所表示的几何意义.4、B【解析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值【详解】切线长的最小值是当直线上的点与圆心距离最小时取得,圆心到直线的距离为,圆的半径为1,故切线长的最小值为,故选:B【点睛】本题考查圆的切线方程,点到直线的距离,是基础题5、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论6、B【解析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角)∴该几何体的体积V=6×6×3﹣=100故选B考点:由三视图求面积、体积7、B【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积8、D【解析】由斜二测画法原理,把该梯形的直观图还原为原来的梯形,结合图形即可求得面积【详解】由斜二测画法原理,把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a,下底为b,高为h,则直观图中等腰梯形的高为h′=hsin45°;∵等腰梯形的体积为(a+b)h′=(a+b)•hsin45°=,∴(a+b)•h==4,∴该梯形的面积为4故选D【点睛】本题考查了平面图形的直观图的还原与求解问题,解题时应明确直观图与原来图形的区别和联系,属于基础题9、D【解析】分析条件与结论的关系,根据充分条件和必要条件的定义确定正确选项.【详解】若角为锐角,不妨取,则,所以“角为锐角”是“”的不充分条件,由,可得,所以角不一定为锐角,所以“角为锐角”是“”的不必要条件,所以“角为锐角”是“”的既不充分也不必要条件,故选:D.10、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.11、C【解析】函数中,因为所以.有.故选C.12、B【解析】由题意,所以.故选B考点:集合的运算二、填空题(本大题共4小题,共20分)13、【解析】根据对数运算法则得到,再根据对数运算法则及三角函数弦化切进行计算.【详解】∵,∴,又,.故答案为:14、【解析】由复合函数单调性的判断法则及对数函数的真数大于0恒成立,列出不等式组求解即可得答案.【详解】解:因为,函数在区间内为减函数,所以有,解得,所以实数a的取值范围为,故答案为:.15、##1.5【解析】由化简得,再由基本不等式可求得,从而确定最大值【详解】,,,,,,,当且仅当时即取等号,,解得,故,故的最大值为,故答案为:16、【解析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【点睛】本题考查了过圆上的点的求圆的切线方程,属于容易题.三、解答题(本大题共6小题,共70分)17、(1);(2)【解析】(1)首先利用向量数量积的坐标运算并且结合二倍角公式与两角和的正弦公式化简函数的解析式,可得:.由已知为偶函数知其图象关于y轴对称,可得:当x=0成立,从而可得,再根据θ的范围即可得到答案(2)由(1)可得:,再结合余弦函数的图象及性质可得:,进而结合x的取值范围得到结果试题解析:(1)由题意可得:所以函数解析式为:;因为为偶函数,所以有:即:又因为,所以(2)由(1)可得:,因为,所以由余弦函数的图象及性质得:,又因为,所以x的集合为考点:1.两角和与差的正余弦公式、二倍角公式;2.向量数量积的坐标运算;3.三角函数的性质18、(1)π(2)x∈-π6,π3时,f(x)【解析】(1)对f(x)化简后得到fx=sin2x-π6【小问1详解】f(x)=所以f(x)的最小正周期为2【小问2详解】当x∈-π故当-π2⩽2x-π6当π2⩽2x-π6⩽当2x-π6∈所以-32⩽f(x)⩽119、(1)3;(2)-.【解析】(1)利用诱导公式化简求值即可;(2)应用同角三角函数的平方关系、商数关系,将目标式化简为sinα+cosα,再根据已知及与sinα+cosα的关系,求值即可.【详解】(1).(2)原式=-=-=-==sinα+cosα.∵sinαcosα=,且α是第三象限角,∴sinα+cosα=-=-=-=-20、(1)证明见解析;(2)证明见解析.【解析】(1)证明,再由,由平行公理证明,证得四点共面;(2)证明,证得面,再证得,证得面,从而证得平面EFA1∥平面BCHG.【详解】(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1GEB且,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【点睛】本题考查了四点共面的证明,面面平行的判定,考查对基本定理的掌握与应用,空间想象能力,要注意线线平行、线面平行、面面平行之间的相互转化,属于中档题.21、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解析】(1)利用周期公式可得最小正周期,由的单调递增区间可得的单调递增区间;(2)由得,当,即时,函数取得最大值,当,即时,函数取得最小值可得答案.【小问1详解】函数的最小正周期为,令因为的单调递增区间是,由,解得,所以,函数的单调递增区间是.【小问2详解】令,因为,所以,即,当,即时,函数取得最大值,因此的最大值为,此时自变量的值为;当,即时,函数取得最小值,因此的最小值为,此时自变量的值为.22、(1)小王比原来每年少交12960元个人所得税(2)①;②他的税前全年应纳税所得额为153850元【解析】(1)分别按旧税率和新税率计算所纳税款,比较即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论