版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南平顶山许昌济源2023-2024学年高一数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.某同学用二分法求方程的近似解,该同学已经知道该方程的一个零点在之间,他用二分法操作了7次得到了方程的近似解,那么该近似解的精确度应该为A.0.1 B.0.01C.0.001 D.0.00012.已知命题,则命题的否定为()A. B.C. D.3.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于()A. B.C. D.4.若方程表示圆,则实数的取值范围是A. B.C. D.5.如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为A B.C. D.6.已知条件,条件,则p是q的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.过点和,圆心在轴上的圆的方程为A. B.C D.8.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④9.“xR,exx10”的否定是()A.xR,exx10 B.xR,exx10C.xR,exx10 D.xR,exx1010.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是()A. B.C. D.11.“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.设函数的定义域,函数的定义域为,则=A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数若关于的方程有5个不同的实数根,则的取值范围为___________.14.已知,且的终边上一点P的坐标为,则=______15.使得成立的一组,的值分别为_____.16.在正方形ABCD中,E是线段CD的中点,若,则________.三、解答题(本大题共6小题,共70分)17.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.18.已知圆C经过点A(0,0),B(7,7),圆心在直线上(1)求圆C的标准方程;(2)若直线l与圆C相切且与x,y轴截距相等,求直线l的方程19.如图,在同一平面上,已知等腰直角三角形纸片的腰长为3,正方形纸片的边长为1,其中B、C、D三点在同一水平线上依次排列.把正方形纸片向左平移a个单位,.设两张纸片重叠部分的面积为S.(1)求关于a的函数解析式;(2)若,求a的值.20.已知的顶点,边上的中线所在的直线方程为,边上的高所在的直线方程为.(1)求点的坐标;(2)求所在直线的方程.21.如图,四棱锥P-ABCD的底面为平行四边形,M为PC中点(1)求证:BA∥平面PCD;(2)求证:AP∥平面MBD22.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】令,则用计算器作出的对应值表:由表格数据知,用二分法操作次可将作为得到方程的近似解,,,近似解的精确度应该为0.01,故选B.2、D【解析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题的否定为:.故选:D3、D【解析】根据斜二测画法的规则,得出该平面图象的特征,结合面积公式,即可求解.【详解】由题意,根据斜二测画法规则,可得该平面图形是上底长为,下底长为,高为的直角梯形,所以计算得面积为.故选:D.4、A【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A考点:圆的一般方程5、B【解析】由题意可知,P在正视图中的射影是在C1D1上,AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2,所以三棱锥P﹣ABC的正视图的面积为三棱锥P﹣ABC的俯视图的面积的最小值为,所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为,故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.6、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B7、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.8、B【解析】利用三角函数图象变换可得出结论.【详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.9、B【解析】由全称命题的否定即可得解.【详解】因为命题“xR,exx10”为全称命题,所以该命题的否定为:xR,exx10.故选:B.10、D【解析】先逐个求解所有5个三角形的面积,再根据要求计算概率.【详解】如图所示,,,,,的面积分别为,,将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以故选:D11、B【解析】先根据“关于x的不等式x2-2ax+a>0对x∈R恒成立”得0<a<1【详解】设p:“关于x的不等式x2-2ax+a>0对x∈R恒成立则由p知一元二次函数y=x2-2ax+a的图象开口向上,且所以对于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1⊊所以“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立”故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含12、B【解析】由题意知,,所以,故选B.点睛:集合是高考中必考知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错二、填空题(本大题共4小题,共20分)13、【解析】根据函数的解析式作出函数的大致图像,再将整理变形,然后将方程的根的问题转化为函数图象的交点问题解决.【详解】由题意得,即或,的图象如图所示,关于的方程有5个不同的实数根,则或,解得,故答案为:14、【解析】先求解,判断的终边在第四象限,计算,结合,即得解【详解】由题意,故点,故终边在第四象限且,又故故答案为:15、,(不唯一)【解析】使得成立,只需,举例即可.【详解】使得成立,只需,所以,,使得成立的一组,的值分别为,故答案为:,(不唯一)16、【解析】详解】由图可知,,所以))所以,故,即,即得三、解答题(本大题共6小题,共70分)17、(1);(2);(3).【解析】(1)由函数为奇函数可得,即,整理得,可得,解得,经验证不合题意.(2)根据单调性的定义可证明函数在区间上为增函数,从而可得在区间上的值域为,故,从而可得所有上界构成的集合为.(3)将问题转化为在上恒成立,整理得在上恒成立,通过判断函数的单调性求得即可得到结果试题解析:(1)∵函数是奇函数,∴,即,∴,∴,解得,当时,,不合题意,舍去∴.(2)由(1)得,设,令,且,∵;∴在上是减函数,∴在上是单调递增函数,∴在区间上是单调递增,∴,即,∴在区间上的值域为,∴,故函数在区间上的所有上界构成的集合为.(3)由题意知,上恒成立,∴,∴,因此在上恒成立,∴设,,,由知,设,则,,∴在上单调递减,在上单调递增,∴在上的最大值为,在上的最小值为,∴∴的取值范围.点睛:(1)本题属于新概念问题,解题的关键是要紧紧围绕所给出的新定义,然后将所给问题转化为函数的最值(或值域)问题处理(2)求函数的最值(或值域)时,利用单调性是常用的方法之一,为此需要先根据定义判断出函数的单调性,再结合所给的定义域求出最值(或值域)18、(1)(x﹣3)2+(y﹣4)2=25(2)yx或x+y+57=0或x+y﹣57=0【解析】(1)设圆心C(a,b),半径为r,然后根据条件建立方程组求解即可;(2)分直线l经过原点、直线l不经过原点两种情况求解即可.【小问1详解】根据题意,设圆心C(a,b),半径为r,标准方程为(x﹣a)2+(y﹣b)2=r2,圆C经过点A(0,0),B(7,7),圆心在直线上,则有,解可得,则圆C的标准方程为(x﹣3)2+(y﹣4)2=25,小问2详解】若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①直线l经过原点,设直线l的方程为y=kx,则有5,解得k,此时直线l的方程为yx;②直线l不经过原点,设直线l的方程为x+y﹣m=0,则有5,解得m=7+5或7﹣5,此时直线l方程为x+y+57=0或x+y﹣57=0;综合可得:直线l的方程为yx或x+y+57=0或x+y﹣57=019、(1);(2)或.【解析】(1)讨论、、分别求对应的,进而写出函数解析式的分段形式.(2)根据(1)所得解析式,将代入求a值即可.【小问1详解】如下图,延长到上的,又,则,∴,当时,;当时,;当时,.综上,.小问2详解】由(1)知:在上,;在上,,整理得,解得(舍)或.综上,或时,.20、(1)(2)【解析】(1)根据AC和BH的垂直关系可得到直线的方程为,再代入点A的坐标可得到直线的方程为,联立CM直线可得到C点坐标;(2)设,则,将两个点分别带入BH和CM即可求出,结合第一问得到BC的方程解析:(1)因为,的方程为,不妨设直线的方程为,将代入得,解得,所以直线的方程为,联立直线的方程,即,解得点的坐标为.(2)设,则,因为点在上,点在上,所以,解得,所以,所以直线的方程为,整理得.21、(1)见解析(2)见解析【解析】(1)根据平行四边形的性质可知,结合直线与平面平行的判定定理可得结论;(2)设,连接,由平行四边形的性质可知为中位线,从而得到,利用线面平行的判定定理,即可证出平面.【详解】证明(1)∵如图,四棱锥P-ABCD的底面为平行四边形,∴BC∥AD,又∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD;(2)设AC∩BD=H,连接MH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为PC中点,∴MH为△PAC中位线,可得MH∥PA,MH⊂平面MBD,PA⊄平面MBD,所以PA∥平面MBD【点睛】本题主要考查线面平行的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.22、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学2.1压强
- 小学二年级100以内进退位加减法800道题
- 信息论与编码课件(全部课程内容)
- 医院节能环保与资源利用管理制度
- 人教部编版四年级语文上册第6课《夜间飞行的秘密》精美课件
- 【寒假阅读提升】四年级下册语文试题-文言文阅读(三)-人教部编版(含答案解析)
- 2024年客运从业资格证继续教育手机
- 2024年汕尾从业资格证客运考试题库
- 2024年雅安道路客运输从业资格证考试
- 2024年银川客运资格用什么练题好
- 院前急救与院内急诊有效衔接工作制度
- 2.1充分发挥市场在资源配置中的决定性作用(课件) 2024-2025学年高中政治 必修2 经济与社会
- Unit+5+Fun+Clubs+Section+A++(1a-1d)教学课件-2024-2025学年人教新目标(2024)七年级英语上册
- 超聚变 FCIA 考试题库
- 2024-2025学年初中地理七年级上册(2024)晋教版(2024)教学设计合集
- 第一单元第二节 改造家庭网络(第二课时)教案2024-2025学年川教版(2024)信息科技 七年级上册
- 智联招聘在线测评真题
- 2024年社区工作者面试题库与答案
- 2024年菱角项目可行性研究报告
- 农产品质量追溯系统操作手册
- 双减背景下“减负增效”初中数学作业设计策略研究课题开题报告
评论
0/150
提交评论