




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江哈三中2024届高一上数学期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.若,则()A.“”是“”的充分不必要条件 B.“”是“”的充要条件C.“”是“”的必要不充分条件 D.“”是“”的既不充分也不必要条件2.已知a,b,,那么下列命题中正确的是()A.若,则 B.若,则C.若,且,则 D.若,且,则3.将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这样的分割被称为黄金分割,黄金分割蕴藏着丰富的数学知识和美学价值,被广泛运用于艺术创作、工艺设计等领域.黄金分制的比值为无理数,该值恰好等于,则()A. B.C. D.4.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.25.已知集合,,若,则的子集个数为A.14 B.15C.16 D.326.把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A. B.C. D.7.过点和,圆心在轴上的圆的方程为A. B.C D.8.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B.C. D.9.下列区间中,函数单调递增的区间是()A. B.C. D.10.已知三个顶点的坐标分别为,,,则外接圆的标准方程为()A. B.C. D.11.已知向量且,则x值为().A.6 B.-6C.7 D.-712.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度二、填空题(本大题共4小题,共20分)13.由直线上的任意一个点向圆引切线,则切线长的最小值为________.14.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______15.设函数,若函数满足对,都有,则实数的取值范围是_______.16.已知向量,,则向量在方向上的投影为___________.三、解答题(本大题共6小题,共70分)17.设函数.(1)求函数在上的最小值;(2)若方程在上有四个不相等实根,求的范围.18.如图,某园林单位准备绿化一块直径为BC的半圆形空地,外的地方种草,的内接正方形PQRS为一水池,其余的地方种花.若,,设的面积为,正方形PQRS的面积为.(1)用a,表示和;(2)当a为定值,变化时,求的最小值,及此时的值.19.如图,已知直线//,是直线、之间的一定点,并且点到直线、的距离分别为1、2,垂足分别为E、D,是直线上一动点,作,且使与直线交于点.试选择合适的变量分别表示三角形的直角边和面积S,并求解下列问题:(1)若为等腰三角形,求和的长;(2)求面积S最小值.20.已知幂函数的图象经过点.(1)求的解析式;(2)用定义证明:函数在区间上单调递增.21.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?22.已知向量,,(1)若,求向量与的夹角;(2)若函数.求当时函数的值域
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据推出关系依次判断各个选项即可得到结果.【详解】对于A,,,则“”是“”的必要不充分条件,A错误;对于B,,,则“”是“”的充分不必要条件,B错误;对于C,,,则“”是“”的必要不充分条件,C正确;对于D,,,则“”是“”的充分不必要条件,D错误.故选:C.2、A【解析】根据不等式的性质判断【详解】若,显然有,所以,A正确;若,当时,,B错;若,则,当时,,,C错;若,且,也满足已知,此时,D错;故选:A3、C【解析】根据余弦二倍角公式即可计算求值.【详解】∵=,∴,∴.故选:C.4、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值5、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C6、D【解析】先得到两个正三角形面积之和的表达式,再对其求最小值即可.【详解】设一个正三角形的边长为,则另一个正三角形的边长为,设两个正三角形的面积之和为,则,当时,S取最小值.故选:D7、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.8、C【解析】如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选:C.9、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数10、C【解析】先判断出是直角三角形,直接求出圆心和半径,即可求解.【详解】因为三个顶点的坐标分别为,,,所以,所以,所以是直角三角形,所以的外接圆是以线段为直径的圆,所以圆心坐标为,半径故所求圆的标准方程为故选:C11、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.12、B【解析】直接利用三角函数的平移变换求解.【详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【点睛】本题主要考查三角函数的图象的平移变换,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.14、【解析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可15、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.16、【解析】直接利用投影的定义求在方向上的投影.【详解】因为,,设与夹角为,,则向量在方向上的投影为:.所以在方向上投影为故答案为:.三、解答题(本大题共6小题,共70分)17、(1)见解析;(2)【解析】(1)将函数化简为,令,则,求出对称轴,对区间与对称轴的位置关系进行分类讨论求出最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等实根,列出相应的不等式组,求解即可.【详解】(1),令,则,对称轴为:当即时,,当即时,,当时,,所以求函数在上的最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等零点,,解得.【点睛】本题考查动轴定区间分类讨论二次函数最小值,正弦函数的单调性,二次函数的几何性质,属于中档题.18、(1);(2)当时,的值最小,最小值为【解析】(1)利用已知条件,根据锐角三角形中正余弦的利用,即可表示出和;(2)根据题意,将表示为的函数,利用倍角公式对函数进行转化,利用换元法,借助对勾函数的单调性,从而求得最小值.【详解】(1)在中,,所以;设正方形的边长为x,则,,由,得,解得;所以;(2),令,因为,所以,则,所以;设,根据对勾函数的单调性可知,在上单调递减,因此当时,有最小值,此时,解得;所以当时,的值最小,最小值为.【点睛】本题考查倍角公式的使用,三角函数在锐角三角形中的应用,以及利用对勾函数的单调性求函数的最值,涉及换元法,属综合性中档题.19、(1),;(2)2.【解析】(1)根据相似三角形的判定定理和性质定理,结合等腰三角形的性质、勾股定理进行求解即可;(2)根据直角三角形面积公式,结合基本不等式进行求解即可.【小问1详解】由点到直线、的距离分别为1、2,得AE=1、AD=2,由,得,则,由题意得,在中,,从而,由和,得∽,则,即,在中,,在中,,由为等腰三角形,得,则且,故,.【小问2详解】由,,,得在中,,当且仅当即时等号成立,故面积S的最小值为2.20、(1);(2)证明见解析.【解析】(1)设幂函数,由得α的值即可;(2)任取且,化简并判断的正负即可得g(x)的单调性.小问1详解】设,则,解得,∴;【小问2详解】由(1)可知,任取且,则,∵,则,,故,因此函数在上为增函数.21、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神经已崩700字(13篇)
- 金融工作方案模板
- 酒店业酒店数字化营销及客户管理系统建设
- 工业互联网平台及工业大数据应用研究
- 同学会宣扬委员工作方案
- 生成稳定化合物的二组分系统李冬丽85课件
- 传媒公司碎纸机使用记录规定
- 刨花板生产计划与生产数据统计分析考核试卷
- 河南2024初一数学试卷
- 2025年电商绿色物流行业物流配送效率提升报告
- 新版有创血压监测ABP培训课件
- 重症医学科常用知情告知书
- 家具厂安全生产操作规程大全
- 防溺水、防性侵、防欺凌安全教育家长会
- DB11-T1322-14-2017安全生产等级评定技术规范第14部分:汽车制造企业
- 养老机构安全检查表
- 企业员工上下班交通安全培训(简详共2份)
- 小区物业服务收支情况公示
- 统编版小学语文二升三衔接专项训练—看图写话(二)【含答案】
- T∕CHTS 20016-2021 公路桥梁各向异性摩擦摆减隔震支座
- 安徽省高等学校招生考生报名登记表
评论
0/150
提交评论