黑龙江省鹤岗市工农区鹤岗一中2023年高一数学第一学期期末达标检测模拟试题含解析_第1页
黑龙江省鹤岗市工农区鹤岗一中2023年高一数学第一学期期末达标检测模拟试题含解析_第2页
黑龙江省鹤岗市工农区鹤岗一中2023年高一数学第一学期期末达标检测模拟试题含解析_第3页
黑龙江省鹤岗市工农区鹤岗一中2023年高一数学第一学期期末达标检测模拟试题含解析_第4页
黑龙江省鹤岗市工农区鹤岗一中2023年高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省鹤岗市工农区鹤岗一中2023年高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四2.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则3.已知集合,则函数的最小值为()A.4 B.2C.-2 D.-44.“对任意,都有”的否定形式为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得5.在下列图象中,函数的图象可能是A. B.C. D.6.已知,且,则()A. B.C. D.7.有三个函数:①,②,③,其中图像是中心对称图形的函数共有().A.0个 B.1个C.2个 D.3个8.若圆上至少有三个不同的点到直线的距离为,则的取值范围是()A. B.C. D.9.为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为3000万元,在此基础上,以后每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:,,)()A2026年 B.2027年C.2028年 D.2029年10.已知函数,若,则函数的单调递减区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数f(x)=xa的图象经过点(8,2),则f(27)的值为____________12.如果满足对任意实数,都有成立,那么a的取值范围是______13.若,则___________14.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______15.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的16.若()与()互为相反数,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围18.如图,、分别是的边、上的点,且,,交于.(1)若,求的值;(2)若,,,求的值.19.已知全集,集合,集合.(1)若,求;(2)若“”是“”必要不充分条件,求实数的取值范围.20.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值21.已知函数(1)当时,解方程;(2)当时,恒成立,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据判断、、的正负号,即可判断直线通过的象限【详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【点睛】本题考查直线,作为选择题2、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.3、D【解析】因为集合,所以,设,则,所以,且对称轴为,所以最小值为,故选D4、D【解析】全称命题的否定是特称命题,据此得到答案.【详解】全称命题的否定是特称命题,则“对任意,都有”的否定形式为:存在,使得.故选:D.【点睛】本题考查了全称命题的否定,属于简单题.5、C【解析】根据函数的概念,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数,即可判定.【详解】由函数的概念可知,任意一个自变量的值对应的因变量的值是唯一的,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数是0或1,显然A、B、D均不满足函数的概念,只有选项C满足.故选:C.【点睛】本题主要考查了函数概念,以及函数的图象及函数的表示,其中解答中正确理解函数的基本概念是解答的关键,着重考查了数形结合思想的应用.6、B【解析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解.【详解】,,.故选:B7、C【解析】根据反比例函数的对称性,图象变换,然后结合中心对称图形的定义判断【详解】,显然函数的图象是中心对称图形,对称中心是,而的图形是由的图象向左平行3个单位,再向下平移1个单位得到的,对称中心是,由得,于是不是中心对称图形,,中间是一条线段,它关于点对称,因此有两个中心对称图形故选:C8、D【解析】先整理圆的方程为可得圆心和半径,再转化问题为圆心到直线的距离小于等于,进而求解即可【详解】由题,圆标准方程为,所以圆心为,半径,因为圆上至少有三个不同点到直线的距离为,所以,所以圆心到直线的距离小于等于,即,解得,故选:D【点睛】本题考查直线与圆的位置关系的应用,考查圆的一般方程到圆的标准方程的转化,考查数形结合思想9、B【解析】设经过年之后,投入资金为万元,根据题意列出与的关系式;1亿元转化为万元,令,结合参考数据即可求出的范围,从而判断出选项.【详解】设经过年之后,投入资金为万元,则,由题意可得:,即,所以,即,又因为,所以,即从2027年开始该市全年用于垃圾分类的资金超过1亿元.故选:B10、D【解析】由判断取值范围,再由复合函数单调性的原则求得函数的单调递减区间【详解】,所以,则为单调增函数,又因为在上单调递减,在上单调递增,所以的单调减区间为,选择D【点睛】复合函数的单调性判断遵循“同增异减”的原则,所以需先判断构成复合函数的两个函数的单调性,再判断原函数的单调性二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】根据幂函数f(x)=xa的图象经过点(8,2)求出a的值,再求f(27)的值.【详解】幂函数f(x)=xa的图象经过点(8,2),则8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案为3【点睛】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.12、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.13、【解析】只需对分子分母同时除以,将原式转化成关于的表达式,最后利用方程思想求出.再利用二倍角的正切公式,即可求得结论【详解】解:,即,故答案为:【点睛】本题考查同角三角函数的关系,考查二倍角的正切公式,正确运用公式是关键,属于基础题14、【解析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为15、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx16、2【解析】有题设得到,利用基本不等式求得最小值.【详解】由题知,,则,,则,当且仅当时等号成立,故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据即可求出实数a的值;(2)令,根据由求得的值,再根据正弦函数的性质分析的取值情况,结合题意即可得出答案.【小问1详解】解:,∴,∴;【小问2详解】解:令,则,由得,∵在[-,]上是增函数,在[,]上是减函数,且,∴时,x有两个值;或时,x有一个值,其它情况,x值不存在,∴时函数f(x)只有1个零点,时,,要f(x)有2个零点,有,∴时,,要f(x)有2个零点,有,综上,f(x)有两个零点时,a的取值范围是.18、(1);(2).【解析】(1)利用平面向量加法的三角形法则可求出、的值,进而可计算出的值;(2)设,设,根据平面向量的基本定理可得出关于、的方程组,解出这两个未知数,可得出关于、的表达式,然后用、表示,最后利用平面向量数量积的运算律和定义即可计算出的值.【详解】(1),,,因此,;(2)设,再设,则,即,所以,,解得,所以,因此,.【点睛】本题考查利用平面向量的基本定理求参数,同时也考查了平面向量数量积的计算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中等题.19、(1)(2)【解析】(1)求出集合,利用补集和交集的定义可求得;(2)分析可知且,可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:当时,,则或,,因此,.【小问2详解】解:因为“”是“”必要不充分条件,于是得且,所以,,解得.所以实数的取值范围是.20、(1);(2).【解析】(1)由二次函数可设,再利用进行化简分析即可.(2)由(1)可知,对称轴为,通过讨论的范围,根据函数的单调性,求出函数的最小值.【详解】(1)由二次函数可设,因为,故,即,即,故,即,故;(2)函数的对称轴为,则当,即时,在单调递减,;当,即时,;当时,在单调递增,,.【点睛】本题主要考查二次函数的解析式求解以及二次函数最值的问题等,属于中等题型.21、(1)(2)【解析】(1)当时,,求出,把原方程转化为指数方程,再利用换元法求解,即可求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论