河北省两校2023年高一数学第一学期期末联考试题含解析_第1页
河北省两校2023年高一数学第一学期期末联考试题含解析_第2页
河北省两校2023年高一数学第一学期期末联考试题含解析_第3页
河北省两校2023年高一数学第一学期期末联考试题含解析_第4页
河北省两校2023年高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省两校2023年高一数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数,x∈R在()A.上是增函数B.上是减函数C.上是减函数D.上是减函数2.若sinα=-,且α为第三象限的角,则cosα的值等于()A. B.C. D.3.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值4.已知函数是定义在上的偶函数,当时,,则的值是A. B.C. D.5.若无论实数取何值,直线与圆相交,则的取值范围为()A. B.C. D.6.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则7.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则A. B.C. D.8.已知sinα+cosα=,则sin的值为()A.- B.C.- D.9.设的两根是,则A. B.C. D.10.已知点P(3,4)在角的终边上,则的值为()A B.C. D.11.下列函数中,既是偶函数又在单调递增的函数是()A. B.C. D.12.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为(单位:),鲑鱼的耗氧量的单位数为.科学研究发现与成正比.当时,鲑鱼的耗氧量的单位数为.当时,其耗氧量的单位数为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数f(x),若f(a)=4,则a=_____14.若坐标原点在圆的外部,则实数m的取值范围是___15.的化简结果为____________16.关于的不等式的解集是________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,.(1)求方程的解集;(2)定义:.已知定义在上的函数,求函数的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数的简图,并根据图象写出函数的单调区间和最小值.18.已知函数(1)求的定义域;(2)判断的奇偶性,并说明理由;(3)设,证明:19.闽东传承着中国博大精深的茶文化,讲究茶叶茶水的口感,茶水的口感与茶叶类型和水的温度有关.如果刚泡好的茶水温度是,空气的温度是,那么分钟后茶水的温度(单位:)可由公式求得,其中是一个物体与空气的接触状况而定的正常数.现有某种刚泡好的红茶水温度是,放在的空气中自然冷却,10分钟以后茶水的温度是(1)求k的值;(2)经验表明,温度为的该红茶水放在的空气中自然冷却至时饮用,可以产生最佳口感,那么,大约需要多长时间才能达到最佳饮用口感?(结果精确到,附:参考值)20.已知角的终边有一点.(1)求的值;(2)求的值.21.已知函数的一段图像如图所示.(1)求此函数的解析式;(2)求此函数在上的单调递增区间.22.已知函数(1)求的图象的对称轴的方程;(2)若关于的方程在上有两个不同的实数根,求实数的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】化简,根据余弦函数知识确定正确选项.【详解】,所以在上递增,在上递减.B正确,ACD选项错误.故选:B2、B【解析】先根据为第三象限角,可知,再根据平方关系,利用,可求的值【详解】解:由题意,为第三象限角,故选.【点睛】本题以三角函数为载体,考查同角三角函数的平方关系,解题时应注意判断三角函数的符号,属于基础题.3、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B4、B【解析】根据偶函数性质的,再代入对应解析式得结果.【详解】因为函数是定义在上的偶函数,所以,选B.【点睛】本题考查偶函数应用,考查基本转化求解能力,属于基础题.5、A【解析】利用二元二次方程表示圆的条件及点与圆的位置关系即得.【详解】由圆,可知圆,∴,又∵直线,即,恒过定点,∴点在圆的内部,∴,即,综上,.故选:A.6、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.7、A【解析】由三角函数定义得tan再利用同角三角函数基本关系求解即可【详解】由三角函数定义得tan,即,得3cos解得或(舍去)故选A【点睛】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题8、C【解析】应用辅助角公式可得,再应用诱导公式求目标三角函数的值.【详解】由题设,,而.故选:C9、D【解析】详解】解得或或即,所以故选D10、D【解析】利用三角函数的定义即可求出答案.【详解】因为点P(3,4)在角的终边上,所以,,故选:D【点睛】本题考查了三角函数的定义,三角函数诱导公式,属于基础题.11、B【解析】由奇偶性排除,再由增减性可选出正确答案.【详解】项为奇函数,项为非奇非偶函数函数,为偶函数,项中,在单减,项中,在单调递增.故选:B12、D【解析】设,利用当时,鲑鱼的耗氧量的单位数为求出后可计算时鲑鱼耗氧量的单位数.【详解】设,因为时,,故,所以,故时,即.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.14、【解析】方程表示圆,得,根据点在圆外,得不等式,解不等式可得结果.【详解】圆的标准方程为,则,若坐标原点在圆的外部,则,解得,则实数m的取值范围是,故答案为:【点睛】本题考查圆的一般方程,考查点与圆的位置关系的应用,属于简单题.15、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.16、【解析】不等式,可变形为:,所以.即,解得或.故答案为.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)(3)图象见解析,单调递减区间是,单调递增区间是,最小值为1【解析】(1)根据题意可得,平方即可求解.(2)由题意比较与大小,从而可得出答案.(3)由(2)得到的函数关系,作出函数图像,根据图像可得函数的单调区间和最小值.【小问1详解】由,得且,解得,;所以方程的解集为【小问2详解】由已知得.【小问3详解】函数的图象如图实线所示:函数的单调递减区间是,单调递增区间是,其最小值为1.18、(1)(2)偶函数;理由见解析(3)证明见解析【解析】(1)根据对数函数的真数大于0建立不等式求解;(2)根据函数的奇偶性定义判断即可;(3)利用不等式的性质及对数函数的单调性证明即可.【小问1详解】因为,即,所以函数的定义域是【小问2详解】因为,都有,且,所以函数为偶函数【小问3详解】因为,所以所以所以因为是增函数,所以因为,,所以19、(1)(2)【解析】(1)由解方程可得解;(2)令,解方程可得解.【小问1详解】由题意可知,,其中,所以,解得小问2详解】设刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感,由题意可知,,令,所以,,,所以,所以刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感.20、(1);(2).【解析】(1)根据终边上的点及正切函数的定义求即可.(2)利用诱导公式及商数关系,将目标式化为,结合(1)的结果求值即可.【小问1详解】由题设及正切函数的定义,.【小问2详解】.21、(1);(2)和.【解析】(1)根据三角函数的图象求出A,ω,φ,即可确定函数的解析式;(2)根据函数的表达式,即可求函数f(x)的单调递增区间;【详解】(1)由函数的图象可知A,,∴周期T=16,∵T16,∴ω,∴y=2sin(x+φ),∵函数的图象经过(2,﹣2),∴φ=2kπ,即φ,又|φ|<π,∴φ;∴函数的解析式为:y=2sin(x)(2)由已知得,得16k+2≤x≤16k+10,即函数的单调递增区间为[16k+2,16k+10],k∈Z当k=﹣1时,为[﹣14,﹣6],当k=0时,为[2,10],∵x∈(﹣2π,2π),∴函数在(﹣2π,2π)上的递增区间为(﹣2π,﹣6)和[2,2π)【点睛】本题主要考查三角函数解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论