河北省衡水市深州市长江中学2023年数学高一上期末考试试题含解析_第1页
河北省衡水市深州市长江中学2023年数学高一上期末考试试题含解析_第2页
河北省衡水市深州市长江中学2023年数学高一上期末考试试题含解析_第3页
河北省衡水市深州市长江中学2023年数学高一上期末考试试题含解析_第4页
河北省衡水市深州市长江中学2023年数学高一上期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省衡水市深州市长江中学2023年数学高一上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.直线的倾斜角是A. B.C. D.2.已知过点和的直线与直线平行,则的值为()A. B.0C.2 D.103.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-44.在一次数学实验中,某同学运用图形计算器采集到如下一组数据:x01.002.03.0y0.240.5112.023.988.02在四个函数模型(a,b为待定系数)中,最能反映,y函数关系的是().A. B.C. D.5.已知函数是定义在上的偶函数,且在上单调递增,若,则不等式解集为A. B.C. D.6.函数的部分图像如图所示,则的值为()A. B.C. D.7.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.8.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.9.学校操场上的铅球投郑落球区是一个半径为米的扇形,并且沿着扇形的弧是长度为约米的防护栏,则扇形弧所对的圆心角的大小约为()A. B.C. D.10.若函数的定义域是()A. B.C. D.11.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.12.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)14.已知圆,圆,则两圆公切线的方程为__________15.已知,若,则_______;若,则实数的取值范围是__________16.某时钟的秒针端点到中心点的距离为6cm,秒针均匀地绕点旋转,当时间时,点与钟面上标12的点重合,将,两点的距离表示成的函数,则_______,其中三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知且.(1)求的解析式;(2)解关于x不等式:.18.如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD,,若(1)求证:(2)求三棱锥的体积.19.已知函数为奇函数.(1)求实数的值,并用定义证明是上的增函数;(2)若关于的不等式的解集非空,求实数的取值范围.20.已知集合,,.(1)求,;(2)若,求实数的取值范围.21.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.22.函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当x∈[-2,2]时,求f(x)的值域.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】,斜率为,故倾斜角为.2、A【解析】因为过点和的直线与直线平行,所以两直线的斜率相等.【详解】解:∵直线的斜率等于,∴过点和的直线的斜率也是,,解得,故选:A.【点睛】本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.4、B【解析】由题中表格数据画出散点图,由图观察实验室指数型函数图象【详解】由题中表格数据画出散点图,如图所示,观察图象,类似于指数函数对于A,是一次函数,图象是一条直线,所以A错误,对于B,是指数型函数,所以B正确,对于C,是对数型函数,由于表中的取到了负数,所以C错误,对于D,是反比例型函数,图象是双曲线,所以D错误,故选:B5、B【解析】,又函数是定义在上的偶函数,且在上单调递增,所以,解得.考点:偶函数的性质.【思路点睛】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.根据函数奇偶性可得,再根据函数的单调性,可得;然后再解不等式即可求出结果6、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.7、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题8、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.9、A【解析】直接由弧长半径圆心角的公式求解即可.【详解】根据条件得:扇形半径为10,弧长为6,所以圆心角为:.故选:A.10、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C11、D【解析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.12、C【解析】根据三角函数的周期变换和平移变换的原理即可得解.【详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由弧长公式变形可得:,代入计算即可.【详解】解:由题意可知:(弧度).故答案为:.14、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.15、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,16、【解析】设函数解析式为,由题意将、代入求出参数值,即可得解析式.【详解】设,由题意知:,当时,,则,,令得;当时,,则,,令得,所以.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)根据已知条件联立方程组求出,进而求出函数的解析式;(2)根据已知条件求出,进而得出不等式,利用换元法及一元二次不等式得出的范围,再根据指数与对数互化解指数不等式即可.【小问1详解】由,得,解得.所以的解析式为.【小问2详解】由(2)知,,所以,由,得,即,令,则,解得或所以,即,解得.所以不等式的解集为.18、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)在等腰梯形中,易得,即又由已知,可得平面,利用面面垂直判定定理可得平面平面.(Ⅱ)求三棱锥的体积,关键是求三棱锥的高,如果不好求,可以换底,本题这样容易求出三棱锥的体积为试题解析:证明:(Ⅰ)在等腰梯形中,∵,∴又∵,∴,∴,即又∵,∴平面,又∵平面,∴平面平面(Ⅱ)∵∵平面,且,∴,∴三棱锥的体积为考点:线面垂直及求三棱锥体积【方法点睛】(1)证明面面垂直常用面面垂直的判定定理,即利用线面垂直,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.或定义法利用线面垂直的判断定理证明线面垂直,条件齐全,证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形等等;(2)利用棱锥的体积公式求体积,在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算19、(1),证明见解析;(2).【解析】(1)由函数奇偶性的性质,求得,再利用函数的单调性的定义与判定方法,即可是上的增函数;(2)由函数为奇函数,且在上单调递增,把不等式转化为在上有解,结合二次函数的性质,即可求解.【详解】(1)因为定义在上的奇函数,可得,都有,令,可得,解得,所以,此时满足,所以函数是奇函数,所以.任取,且,则,因为,即,所以是上的增函数.(2)因为为奇函数,且的解集非空,可得的解集非空,又因为在上单调递增,所以的解集非空,即在上有解,则满足,解得,所以实数的取值范围..20、(1),;(2).【解析】(1)利用集合的并、交运算求,即可.(2)讨论、,根据列不等式求的范围.【详解】(1)∵,∴,.(2)当时,,解得,则满足.当时,,解得,又∴,解得,即.综上,.21、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论