版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
邯郸市重点中学2023年高一数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.命题:,,则该命题的否定为()A., B.,C., D.,2.已知,则()A.-4 B.4C. D.3.若是三角形的一个内角,且,则的值是()A. B.C.或 D.不存在4.从含有两件正品和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为()A. B.C. D.5.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.若,则()A. B.C. D.7.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A. B.C. D.8.已知集合,,则()A. B.C. D.9.若是定义在(-∞,+∞)上的偶函数,∈[0,+∞)且(),则()A. B.C. D.10.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.11.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.12.若某商店将进货单价为6元的商品按每件10元出售,则每天可销售100件.现准备采用提高售价、减少进货量的方法来增加利润.已知这种商品的售价每提高1元,销售量就要减少10件,那么要保证该商品每天的利润在450元以上,售价的取值范围是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设函数则的值为________14.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.15.已知的定义域为,那么a的取值范围为_________16.已知幂函数的图象过点,则______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.解下列关于的不等式;(1);(2).18.某药物研究所开发了一种新药,根据大数据监测显示,病人按规定的剂量服药后,每毫升血液中含药量y(微克)与时间x(小时)之间的关系满足:前1小时内成正比例递增,1小时后按指数型函数y=max−1(m,a为常数,且0<a<1)图象衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.(1)当a=时,求函数y=f(x)的解析式,并求使得y≥1的x的取值范围;(2)研究人员按照M=的值来评估该药的疗效,并测得M≥时此药有疗效.若病人某次服药后测得x=3时每毫升血液中的含药量为y=8,求此次服药有疗效的时长.19.化简或求下列各式的值(1);(2)(lg5)2+lg5•lg20+20.在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题问题:已知函数,,且______(1)求函数的解析式;(2)判断函数在区间上的单调性,并用定义证明注:如果选择多个条件分别解答,按第一个解答计分21.设函数.(1)当时,求函数的最小值;(2)若函数的零点都在区间内,求的取值范围.22.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB1
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据特称命题的否定可得出结论.【详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【点睛】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.2、C【解析】已知,可得,根据两角差的正切公式计算即可得出结果.【详解】已知,则,.故选:C.3、B【解析】由诱导公式化为,平方求出,结合已知进一步判断角范围,判断符号,求出,然后开方,进而求出的值,与联立,求出,即可求解.【详解】,平方得,,是三角形的一个内角,,,,.故选:B【点睛】本题考查诱导公式化简,考查同角间的三角函数关系求值,要注意,三者关系,知一求三,属于中档题.4、B【解析】根据独立重复试验的概率计算公式,准确计算,即可求解.【详解】由题意,该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为.故选:B.5、A【解析】根据充分必要条件的定义判断【详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A6、A【解析】利用作为分段点进行比较,从而确定正确答案.【详解】,所以.故选:A7、A【解析】由题意,的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为,向左平移一个单位为,向下平移一个单位为,利用特殊点变为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.8、D【解析】利用对数函数与指数函数的性质化简集合,再根据集合交集的定义求解即可.【详解】因为,,所以,,则,故选:D.9、B【解析】,有当时函数为减函数是定义在上的偶函数即故选10、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A11、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.12、B【解析】根据题意列出函数关系式,建立不等式求解即可.【详解】设售价为,利润为,则,由题意,即,解得,即售价应定为元到元之间,故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.14、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.15、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:16、3【解析】先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.【详解】设,由于图象过点,得,,,故答案为3.【点睛】本题考查幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)根据一元二次不等式的解法即可得出答案;(1)根据一元二次不等式的解法即可得出答案.【小问1详解】解:不等式可化为,解得,所以不等式的解集为;【小问2详解】解:不等式可化为,解得或,所以不等式的解集为.18、(1),(2)小时【解析】(1)根据图像求出解析式;令直接解出的取值范围;(2)先求出,得到,根据单调性计算出解集即可.【小问1详解】当时,与成正比例,设为,则;所以,当时,故当时,令解得:,当时,令得:,综上所述,使得的的取值范围为:【小问2详解】当时,,解得所以,则令,解得,由单调性可知的解集为,所以此次服药产生疗效的时长为小时19、(1);(2)2【解析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可【详解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【点睛】本题主要考查分数指数幂和对数的运算,考查对数的换底公式.意在考查学生对这些知识的理解掌握水平和计算能力.20、(1)(2)单调递增,证明见解析【解析】(1)若选条件①,根据及指数对数恒等式求出的值,即可求出函数解析式;若选条件②,根据,即可得到,从而求出的值,即可求出函数解析式;若选条件③,直接代入即可得到方程,求出的值,即可求出函数解析式;(2)利用定义法证明函数单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;【小问1详解】解:若选条件①.因为,所以,即解得.所以若选条件②.函数的定义域为R.因为为偶函数,所以,,即,,化简得,所以,即.所以若选条件③.由题意知,,即,解得.所以【小问2详解】解:函数在区间上单调递增证明如下:,,且,则因为,,,所以,即又因为,所以,即所以,即所以在区间上单调递增21、(1);(2)【解析】(1)分类讨论得;(2)由题意,得到等价不等式,解得的取值范围是试题解析:(1)∵函数.当,即时,;当,即时,;当,即时,.综上,(2)∵函数的零点都在区间内,等价于函数的图象与轴的交点都在区间内.∴故的取值范围是22、(1)见解析(2)见解析【解析】(1)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;(2)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE⊂平面CDB1,AC1⊄平面CDB1,满足定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆指标租赁合同书
- 餐馆劳动合同模板
- 教育信息化产品采购合同
- 2025年度个人虚拟货币买卖合同范本4篇
- 2025年度个人消费贷款还款计划调整合同模板4篇
- 2025年度页岩砖绿色建材认证与推广合同3篇
- 2025年度汽车租赁与智能交通系统对接合同3篇
- 2025-2030全球全自动农业机器人行业调研及趋势分析报告
- 2024年全国数控技能大赛理论考试题库-上(单选题) (二)
- 2025年度钢管架施工设备租赁合同样本
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2024年城市轨道交通设备维保及安全检查合同3篇
- 电力沟施工组织设计-电缆沟
- 单位往个人转账的合同(2篇)
- 科研伦理审查与违规处理考核试卷
- GB/T 44101-2024中国式摔跤课程学生运动能力测评规范
- 锅炉本体安装单位工程验收表格
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 高危妊娠的评估和护理
- 妊娠合并强直性脊柱炎的护理查房
- 2024年山东铁投集团招聘笔试参考题库含答案解析
评论
0/150
提交评论