贵州省铜仁市思南中学2023年数学高一上期末综合测试模拟试题含解析_第1页
贵州省铜仁市思南中学2023年数学高一上期末综合测试模拟试题含解析_第2页
贵州省铜仁市思南中学2023年数学高一上期末综合测试模拟试题含解析_第3页
贵州省铜仁市思南中学2023年数学高一上期末综合测试模拟试题含解析_第4页
贵州省铜仁市思南中学2023年数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省铜仁市思南中学2023年数学高一上期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,则()A. B.C. D.2.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.3.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数,则函数图象的对称中心为()A. B.C. D.4.要得到函数f(x)=cos(2x-)的图象,只需将函数g(x)=cos2x的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移单位长度 D.向右平移个单位长度5.已知函数,,若恰有2个零点,则实数a的取值范围是()A. B.C. D.6.若,则错误的是A. B.C. D.7.已知函数,且函数恰有三个不同的零点,则实数的取值范围是A. B.C. D.8.已知偶函数在上单调递增,且,则的解集是()A. B.或C.或 D.或9.若a<b<0,则下列不等式中成立的是()A.-a<-bC.a>-b D.10.下列四个函数中,与函数相等的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,使得,则实数a的取值范围是___________.12.下列命题中,正确命题的序号为______①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量;⑤向量,共线与向量意义是相同的13.函数f(x)=log2(x2-1)的单调递减区间为________14.若a∈{1,a2﹣2a+2},则实数a的值为___________.15.已知,若对一切实数,均有,则___.16.若函数在区间上是增函数,则实数取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围18.(1)已知角的终边过点,且,求的值;(2)已知,,且,求.19.已知函数.(1)求不等式的解集;(2)函数,若存在,使得成立,求实数的取值范围;(3)若函数,讨论函数的零点个数.20.已知函数的定义域为R,其图像关于原点对称,且当时,(1)请补全函数的图像,并由图像写出函数在R上的单调递减区间;(2)若,,求的值21.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)若是的中点,求异面直线与所成角的正切值(2)在棱上是否存在一点,使侧面,若存在,试确定点的位置;若不存在,说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】化简集合A,由交集定义直接计算可得结果.【详解】化简可得,又所以.故选:B.2、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.3、A【解析】根据题意并结合奇函数的性质即可求解.【详解】由题意得,设函数图象的对称中心为,则函数为奇函数,即,则,解得,故函数图象的对称中心为.故选:.4、D【解析】利用函数的图象变换规律即可得解.【详解】解:,只需将函数图象向右平移个单位长度即可故选.【点睛】本题主要考查函数图象变换规律,属于基础题5、B【解析】利用数形结合的方法,作出函数的图象,简单判断即可.【详解】依题意,函数的图象与直线有两个交点,作出函数图象如下图所示,由图可知,要使函数的图象与直线有两个交点,则,即.故选:B.【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.6、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D7、A【解析】函数恰有三个不同的零点等价于与有三个交点,再分别画出和的图像,通过观察图像得出a的范围.【详解】解:方程所以函数恰有三个不同的零点等价于与有三个交点记,画出函数简图如下画出函数如图中过原点虚线l,平移l要保证图像有三个交点,向上最多平移到l’位置,向下平移一直会有三个交点,所以,即故选A.【点睛】本题考查了函数的零点问题,解决函数零点问题常转化为两函数交点问题8、B【解析】由已知和偶函数的性质将不等式转化为,再由其单调性可得,解不等式可得答案【详解】因为,则,所以,因为为偶函数,所以,因为在上单调递增,所以,解得或,所以不等式的解集为或,故选:B9、C【解析】根据函数y=x的单调性,即可判断选项A是否正确;根据函数y=1x在-∞,0上单调递减,即可判断选项B是否正确;在根据不等式的性质即可判断选项【详解】因为a<b<0,所以-a>-b>0,又函数y=x在0,+∞上单调递增,所以因为a<b<0,函数y=1x在-∞,0上单调递减,所以因为a<b<0,所以-a>-b>0,又a=-a,所以a>-b,故因为a<b<0,两边同时除以b,可知ab>1,故D故选:C.10、D【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等.【详解】A选项:解析式为,定义域为R,解析式不相同;B选项:解析式为,定义域为,定义域不相同;C选项:解析式为,定义域为,定义域不相同;D选项:解析式为,定义域为R,符合条件,答案为D.【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将“对,使得,”转化为,再根据二次函数的性质和指数函数的单调性求得最值代入即可解得结果.【详解】当时,,∴当时,,当时,为增函数,所以时,取得最大值,∵对,使得,∴,∴,解得.故答案为:.12、④⑤【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案.【详解】对于①.单位向量方向不同时,不相等,故不正确.对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量.向量可以用有向线段来表示,二者不等同,故不正确,对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确.故答案为:④⑤13、【解析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为14、2【解析】利用集合的互异性,分类讨论即可求解【详解】因为a∈{1,a2﹣2a+2},则:a=1或a=a2﹣2a+2,当a=1时:a2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2【点睛】本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题15、【解析】列方程组解得参数a、b,得到解析式后,即可求得的值.【详解】由对一切实数,均有可知,即解之得则,满足故故答案:16、【解析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【点睛】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别.18、(1);(2)【解析】(1)利用三角函数的定义求出,再根据三角函数的定义求出、即可得解;(2)根据同角三角函数的基本关系求出、,再根据两角差的余弦公式求出,即可得解;【详解】解:(1)因为角的终边过点,且,所以,解得,即,所以,所以,,所以;(2)因为,,所以,又,,所以,所以所以,因为所以19、(1)(2)(3)答案见解析【解析】(1)根据题意条件,分别求解的定义域和解对数不等式即可完成求解;(2)通过题意条件,找到和两函数值域的关系,分别求解出对应的值域,通过分类讨论即可完成求解;(3)通过题意条件,通过讨论的值,分别作出对应的函数图像,借助换元,观察函数图像的交点状况,从而完成求解.【小问1详解】函数,由,可得,即的定义域为;不等式,所以,即为,解得,则原不等式的解为;【小问2详解】函数,若存在,使得成立,则和在上的值域的交集不为空集;由(1)可知:时,显然单调递减,所以其值域为;若,则在上单调递减,所以的值域为,此时只需,即,所以;若,则在递增,可得的值域为,此时与的交集显然为空集,不满足题意;综上,实数的范围是;小问3详解】由,得,令,则,画出的图象,当,只有一个,对应3个零点,当时,,此时,由,得在,三个分别对应一个零点,共3个,在时,,三个分别对应1个,1个,3个零点,共5个,综上所述:当时,只有1个零点,当或时,有3个零点,当时,有5个零点.【点睛】方法点睛:对于“存在,使得成立”,需要将其转化成两函数值域的关系,即两个函数的值域有交集,需根据函数的具体范围进行适时的分类讨论即可.20、(1)作图见解析;单调减区间是和(2)0【解析】(1)由图象关于原点对称,补出另一部分,结合图可求出函数的单调减区间,(2)先求出的值,然后根据函数的奇偶性和解析式求解即可【小问1详解】因为函数的图像关于原点对称,所以是R上的奇函数,故由对称性画出图像在R上的单调减区间是和【小问2详解】,所以21、(1);(2)为四等分点(靠近点A);答案见解析【解析】(1)取中点,连,,则可得为二面角的平面角,为侧棱与底面所成的角,连接,则,从而可得或其补角为异面直线与所成的角,进而可求得答案;(2)延长交于,取中点,连、,由线面垂直的判定可得平面,则平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论