三角形全等的判定(HL)_第1页
三角形全等的判定(HL)_第2页
三角形全等的判定(HL)_第3页
三角形全等的判定(HL)_第4页
三角形全等的判定(HL)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SSSSASASAAAS旧知回顾我们学过的判定三角形全等的方法:三边对应相等的两个三角形全等。(简写成“边边边”或“SSS”)DEFABC“边角边”或“SAS”)两边和它们夹角对应相等的两个三角形全等。(简写成DEFABC“角边角”或“ASA”)两角和它们的夹边对应相等的两个三角形全等。(简写成DEFABCDEFABC两个角和其中一个角的对边对应相等的两个三角形全等。(简写成“角角边”或“AAS”)

如图,△ABC中,∠C=90°,直角边是_____、_____,斜边是______。CBA我们把直角△ABC记作Rt△ABC。ACBCAB思考:

前面学过的四种判定三角形全等的方法,对直角三角形是否适用?情境问题1:

舞台背景的形状是两个直角三角形,为了美观,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量。你能帮工作人员想个办法吗?ABDFCE情境问题1:∠B=∠F=Rt∠

则利用可判定全等;①若测得AB=DF,∠A=∠D,则利用可判定全等;ASA②若测得AB=DF,∠C=∠E,AAS③若测得AC=DE,∠C=∠E,则利用可判定全等;AAS④若测得AC=DE,∠A=∠D,则利用可判定全等;AAS⑤若测得AC=DE,∠A=∠D,AB=DE,则利用可判定全等;SASABDFCE情境问题2:工作人员只带了一条尺,能完成这项任务吗?ABDFCE

工作人员是这样做的,他分别测量了没有被遮住的直角边和斜边,发现它们对应相等,于是他就肯定“两个直角三角形是全等的”。你相信他的结论吗?情境问题2:

对于两个直角三角形,若满足一条直角边和一条斜边对应相等时,这两个直角三角形全等吗?ABDFCE

任意画出一个Rt△ABC,∠C=90°。再画一个Rt△A´B´C´,使得∠C´=90°,B´C´=BC,A´B´=

AB。请你动手画一画∟BCAABC(1)画∠MC'N=90°;(2)在射线C'M上取B'C'=BC;(3)以B'为圆心,AB为半径画弧,交射线C'

N于点A';(4)连接A'B'.

现象:两个直角三角形能重合.

说明:这两个直角三角形全等.画法:A'

NMC'B'斜边和一条直角边对应相等的两个直角三角形全等。(简写为“斜边、直角边”或“HL”。)几何语言:AB=A´B´

∵在Rt△ABC和Rt△A´B´C´中

Rt△ABC≌Rt△A´B´C´∴∟B´C´A´∟BCA(HL)BC=B´C´RtRtRtRt三角形全等判定定理5

通过刚才的探索,发现工作人员的做法是完全正确的。例题1.如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由

理由:∵AF⊥BC,DE⊥BC(已知)∴∠AFB=∠DEC=

°(垂直的定义)在Rt△

和Rt△

中∴

()∴∠

=∠

()∴

(内错角相等,两直线平行)尝试应用:答:.例:如图:AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.ABCD证明:∵AC⊥BC,BD⊥AD,∴∠C和∠D都是直角。在Rt△ABC和Rt△BAD中,AB=BAAC=BD∴Rt△ABC≌Rt△BAD∴BC=AD(HL)(全等三角形对应边相等)1.判断:满足下列条件的两个三角形是否全等?为什么?(1)一个锐角及这个锐角的对边对应相等的两个直角三角形.全等(AAS)(2)一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形.全等(

ASA)1.判断:满足下列条件的两个三角形是否全等?为什么?(3)两直角边对应相等的两个直角三角形.全等(

SAS)1.判断:满足下列条件的两个三角形是否全等?为什么?(4)有两边对应相等的两个直角三角形.不一定全等情况1:全等情况2:全等(SAS)(

HL)1.判断:满足下列条件的两个三角形是否全等?为什么?情况3:不全等1.判断:满足下列条件的两个三角形是否全等?为什么?(5)一个锐角及一边对应相等的两个直角三角形.不一定全等练习2.如图,AB=CD,AE⊥BC,DF⊥BC,

CE=BF.求证AE=DF.ABCDEF∵CE=BF∴CE-EF=BF-EF即CF=BE。课本14页练习2题练习1如图,AB=CD,AE⊥BC,DF⊥BC,

CE=BF.求证:AE=DF.ABCDEF证明:∵AE⊥BC,DF⊥BC∴△ABE和△DCF都是直角三角形。又∵CE=BF∴CE-EF=BF-EF即CF=BE。在Rt△ABE和Rt△DCF中CE=BFAB=DC∴Rt△ABE≌Rt△DCF(HL)∴AE=DFRtRt

练习3.如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D、E与路段AB的距离相等吗?为什么?BDACE实际问题数学问题求证:DA=EB。①AC=BC②CD=CECD与CE相等吗?课本14页练习1题证明:∵DA⊥AB,EB⊥AB,∴∠A和∠B都是直角。AC=BCDC=EC∴Rt△ACD≌Rt△BCE(HL)∴DA=EB在Rt△ACD和Rt△BCE中,又∵C是AB的中点,∴AC=BC∵C到D、E的速度、时间相同,∴DC=ECBDACE(全等三角形对应边相等)判断两个直角三角形全等的方法有:(1):;(2):;(3):;(4):;SSSSASASAAAS(5):;HL(1)

()(2)

()(3)

()(4)

()ABDCAD=BC∠DAB=∠CBABD=AC∠DBA=∠CABHLHLAASAAS

已知∠ACB=∠ADB=90,要证明△ABC≌△BAD,还需一个什么条件?

写出这些条件,并写出判定全等的理由。AFCEDB如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF求证:BF=DE巩固练习AFCEDB如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF求证:BD平分EFG变式训练1如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF想想:BD平分EF吗?CDAFEBG变式训练2议一议如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?∠ABC+∠DFE=90°联系实际综合应用解:在Rt△ABC和Rt△DEF中

BC=EF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论