版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省泗县三中2023-2024学年高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设实数t满足,则有()A. B.C. D.2.已知为三角形的内角,且,则()A. B.C. D.3.冰糖葫芦是中国传统小吃,起源于南宋.由山楂串成的冰糖葫芦如图1所示,若将山楂看成是大小相同的圆,竹签看成一条线段,如图2所示,且山楂的半径(图2中圆的半径)为2,竹签所在的直线方程为,则与该串冰糖葫芦的山楂都相切的直线方程为()A. B.C. D.4.已知集合,下列选项正确的是()A. B.C. D.5.已知,,则下列说法正确的是()A. B.C. D.6.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}7.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有8.已知三条不重合的直线,,,两个不重合的平面,,有下列四个命题:①若,,则;②若,,且,则;③若,,,,则;④若,,,,则.其中正确命题的个数为A. B.C. D.9.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.10.函数的零点所在的区间为()A. B.C. D.11.下列函数中,值域为的偶函数是A. B.C. D.12.非零向量,,若点关于所在直线的对称点为,则向量为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若,则实数的值为______.14.某工厂生产的产品中有正品和次品,其中正品重/个,次品重/个.现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品.将这10袋产品从1~10编号,从第i号袋中取出i个产品,则共抽出______个产品;将取出的产品一起称重,称出其重量,则次品袋的编号为______.15.函数的零点个数为_________.16.若函数在区间上单调递增,则实数的取值范围是__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围18.已知向量(1)当时,求的值;(2)若为锐角,求的范围.19.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.20.已知点P是圆C:(x-3)2+y2=4上的动点,点A(-3,0),M是线段AP的中点(1)求点M的轨迹方程;(2)若点M的轨迹与直线l:2x-y+n=0交于E,F两点,若直角坐标系的原点在以线段为直径的圆上,求n的值21.已知集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数a的值.22.已知(1)求函数的单调区间;(2)求证:时,成立.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由,得到求解.【详解】解:因为,所以,所以,,则,故选:B2、A【解析】根据同角三角函数的基本关系,运用“弦化切”求解即可.【详解】计算得,所以,,从而可计算的,,,选项A正确,选项BCD错误.故选:A.3、D【解析】利用平行线间距离公式即得.【详解】由题可设与该串冰糖葫芦的山楂都相切的直线方程为,则,∴,∴与该串冰糖葫芦的山楂都相切的直线方程为.故选:D.4、B【解析】由已知集合,判断选项中的集合或元素与集合A的关系即可.【详解】由题设,且,所以B正确,A、C、D错误.故选:B5、B【解析】利用对数函数以及指数函数的性质判断即可.【详解】∵,∴,∵,∴,∵,∴,则故选:.6、B【解析】分析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.7、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B8、B【解析】当在平面内时,,①错误;两个平面的垂线平行,且两个平面不重合,则两个平面平行,②正确;③中,当时,平面可能相交,③错误;④正确.故选B.考点:空间线面位置关系.9、A【解析】由扇形面积公式计算【详解】由题意,故选:A10、C【解析】分析函数的单调性,再利用零点存在性定理判断作答.【详解】函数的定义域为,且在上单调递增,而,,所以函数的零点所在的区间为.故选:C11、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D12、A【解析】如图由题意点B关于所在直线的对称点为B1,所以∠BOA=∠B1OA,所以又由平行四边形法则知:,且向量的方向与向量的方向相同,由数量积的概念向量在向量方向上的投影是OM=,设与向量方向相同的单位向量为:,所以向量=2=2=,所以=.故选A.点睛:本题利用平行四边形法则表示和向量,因为对称,所以借助数量积定义中的投影及单位向量即可表示出和向量,解题时要善于借助图像特征体现向量的工具作用.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:14、①.55②.8【解析】将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,得到取出的次品的个数为8个,进而能求出次品袋的编号【详解】某工厂生产的产品中有正品和次品,其中正品重个,次品重个现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,取出的次品的个数为8个,则次品袋的编号为8故答案为:55;815、3【解析】作出函数图象,根据函数零点与函数图象的关系,直接判断零点个数.【详解】作出函数图象,如下,由图象可知,函数有3个零点(3个零点分别为,0,2).故答案为:316、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【点睛】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别.18、(1)x或x=﹣2;(2)x>﹣2且x【解析】(1)利用向量的数量积为零列出方程求解即可.(2)根据题意得•0且,不同向,列出不等式,即可求出结果【详解】(1)2(1+2x,4),2(2﹣x,3),(2)⊥(2),可得(2x+1)(2﹣x)+3×4=0即﹣2x2+3x+14=0.解得:x或x=﹣2(2)若,为锐角,则•0且,不同向•x+2>0,∴x>﹣2,当x时,,同向∴x>﹣2且x【点睛】本题主要考查向量垂直的坐标表示,考查向量夹角为锐角的充要条件,意在考查学生对这些知识的掌握水平和分析推理能力.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函数即可解得,需要检验;(Ⅱ)由得,进而得,令,得,结合的范围求解即可.试题解析:(Ⅰ)经检验成立.(Ⅱ).,设设..当时,成立.当时,成立.当时,不成立,舍去.综上所述,实数的取值范围是.20、(1);(2)【解析】(1)设,,,利用为中点,表示出,代入圆方程即可;(2)根据轨迹以及结合韦达定理、平面向量的数量积,列出关于的方程即可【详解】(1)设为所求轨迹上的任意一点,点P为,则.①又是线段AP的中点,,则,代入①式得(2)联立,消去y得由得.②设,,则.③由可得,,,展开得由③式可得,化简得.④根据②④得21、(1)(2)【解析】(1)若,求出集合、B,进而求出;(2)根据题意得到A是B的真子集,分A为空集和不为空集两种情况,求出a的取值范围.【小问1详解】若,则,,所以.【小问2详解】因为“”是“”的充分不必要条件,所以,①当时,即时,不满足互异性,不符合题意;②当时,即或时,由①可知,时,不符合题意,当时,集合,满足,故可知符合题意.所以.22、(1)增区间为,减区间为;(2)证明见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《锂离子电池设计与制造》教学大纲
- 3下数学4单元教育课件
- 玉溪师范学院《土地利用规划》2022-2023学年第一学期期末试卷
- 英语经典语录(带汉语翻译)
- 会考复习一(公开课教案)
- ECharts数据可视化 教案-教学设计 第2、3章 折线图和饼图、柱状图和散点图
- 计算机网络设备账务处理实例-记账实操
- 化学第一课课件
- 2019湘美版 高中美术 选择性必修3 雕塑《第二单元 雕塑的创作与实践》大单元整体教学设计2020课标
- 草原承包协议书
- 工程检测检验
- 旅行社服务采购
- 公证服务开展法律知识讲座
- 班组消防管理制度
- 消化科护士的危重病人护理技术
- 做好新形势下社会稳定工作的思考
- 《撰写研究报告》课件
- 培养小学生的科学实验和观察能力
- 养成良好睡眠习惯的十四个技巧
- 视频剪辑课件
- 大米食品安全培训
评论
0/150
提交评论