




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省池州一中2023-2024学年高一数学第一学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过20的素数中,随机选取2个不同的数,其和等于20的概率是()【注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数.】A. B.C. D.2.为空间中不重合的两条直线,为空间中不重合的两个平面,则①若;②;③;④上述说法正确的是A.①③ B.②③C.①② D.③④3.已知直线,平面满足,则直线与直线的位置关系是A.平行 B.相交或异面C.异面 D.平行或异面4.已知函数,的图象与直线有两个交点,则的最大值为()A.1 B.2C. D.5.已知命题,;命题,.若,都是假命题,则实数的取值范围为()A. B.C.或 D.6.下列说法正确的是()A.若,则B.若,则C.若,则D.若,则7.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A. B.C. D.8.函数,的图象形状大致是()A. B.C. D.9.已知函数,若方程有三个不同的实数根,则实数的取值范围是A. B.C. D.10.已知,,且,则的最小值为()A. B.C.2 D.111.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最合适的是()x1.992345.156.126y1.514.047.5112.0318.01A. B.C. D.12.在下列区间中,函数fxA.0,14C.12,二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.定义域为上的函数满足,且当时,,若,则a的取值范围是______14.如果直线与直线互相垂直,则实数__________15.若函数,则________16.设函数是定义在上的奇函数,且,则___________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间18.已知函数,函数.(1)填空:函数的增区间为___________(2)若命题“”为真命题,求实数的取值范围;(3)是否存在实数,使函数在上的最大值为?如果存在,求出实数所有的值.如果不存在,说明理由.19.求经过点和,圆心在轴上的圆的方程.20.(1)已知,求最大值(2)已知且,求的最小值21.已知函数满足,且.(1)求的解析式;(2)求在上的值域.22.某兴趣小组在研究性学习活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以天计)的日销售价格(元)与时间(天)的函数关系近似满足(为常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)(个)已知第天该商品日销售收入为元.(1)求出该函数和的解析式;(2)求该商品的日销售收入(元)的最小值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】随机选取两个不同的数共有种,而其和等于20有2种,由此能求出随机选取两个不同的数,其和等于20的概率【详解】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有种,随机选取两个不同的数,其和等于20有2种,分别为(3,17)和(7,13),故可得随机选取两个不同的数,其和等于20的概率,故选:2、A【解析】由线面垂直的性质定理知①正确;②中直线可能在平面内,故②错误;,则内一定有直线//,,则有,所以,③正确;④中可能平行,相交,异面,故④错误,故选A3、D【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点,∴a、b平行或异面.故选D4、D【解析】由可得,然后可得的最大值为,即可得到答案.【详解】由可得,所以当时,由与有两个交点可得的最大值为所以则的最大值为故选:D5、B【解析】写出命题p,q的否定命题,由题意得否定命题为真命题,解不等式,即可得答案.【详解】因为命题p为假命题,则命题p的否定为真命题,即:为真命题,解得,同理命题q为假命题,则命题q的否定为真命题,即为真命题,所以,解得或,综上:,故选:B【点睛】本题考查命题的否定,存在量词命题与全程量词命题的否定关系,考查分析理解,推理判断的能力,属基础题.6、C【解析】运用作差法可以判断C,然后运用代特殊值法可以判断A、B、D,进而得到答案.【详解】对A,令,则.A错误;对B,令,则.B错误;对C,因为,而,则,所以,即.C正确;对D,令,则.D不正确.故选:C.7、B【解析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程8、D【解析】先根据函数奇偶性排除AC,再结合特殊点的函数值排除B.【详解】定义域,且,所以为奇函数,排除AC;又,排除B选项.故选:D9、A【解析】由得画出函数的图象如图所示,且当时,函数的图象以为渐近线结合图象可得当的图象与直线有三个不同的交点,故若方程有三个不同的实数根,实数的取值范围是.选A点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程根的个数,即为直线与图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.10、A【解析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.11、B【解析】由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,逐一判断,选择与实际数据接近的函数得选项.【详解】解:由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,对于A,函数是线性增加的函数,与表中的数据增加趋势不符合,故A不正确;对于C,函数,当,与表中数据7.5的误差很大,不符合要求,故C不正确;对于D,函数,当,与表中数据4.04的误差很大,不符合要求,故D不正确;对于B,当,与表中数据1.51接近,当,与表中数据4.04接近,当,与表中数据7.51接近,所以,B选项的函数是最接近实际的一个函数,故选:B12、C【解析】利用零点存在定理即可判断.【详解】函数fx=e因为函数y=ex,y=2x-3均为增函数,所以fx又f1=ef12=由零点存在定理可得:fx的零点所在的区间为1故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【点睛】本题考查了函数的性质的应用及不等式的求解,属于中档题.14、或2【解析】分别对两条直线的斜率存在和不存在进行讨论,利用两条直线互相垂直的充要条件,得到关于的方程可求得结果【详解】设直线为直线;直线为直线,①当直线率不存在时,即,时,直线的斜率为0,故直线与直线互相垂直,所以时两直线互相垂直②当直线和斜率都存在时,,要使两直线互相垂直,即让两直线的斜率相乘为,故③当直线斜率不存在时,显然两直线不垂直,综上所述:或,故答案为或.【点睛】本题主要考查两直线垂直的充要条件,若利用斜率之积等于,应注意斜率不存在的情况,属于中档题.15、0【解析】令x=1代入即可求出结果.【详解】令,则.【点睛】本题主要考查求函数的值,属于基础题型.16、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)最小正周期为T=π,最大值为(2)[kπ-58π,kπ【解析】(Ⅰ)函数的最小正周期为,函数的最大值为(II)由得函数的单调递增区间为[kπ-5π18、(1)(写出开区间亦可);(2);(3).【解析】(1)根据单调性的定义结合奇偶性可得解;(2)令,问题转化为“”为真命题,根据基本不等式找函数的最小值即可;(3)当时,,记,若函数在上的最大值为,分和,结合对数函数的单调性列式求解即可.【详解】(1)函数的增区间为(写出开区间亦可);理由:,为偶函数,任取,,所以的增区间为.(2),令,当且仅当时取“”,“”为真命题可转化为“”为真命题,因为,当且仅当时取“”,所以,所以;(3)由(1)可知,当时,,记,若函数在上的最大值为,则1)当,即时,在上最小值为1,因为图象的对称轴为,所以,解得,符合题意;2)当,即时,在上最大值为1,且恒成立,因为图象是开口向上的抛物线,在的最大值可能是或,若,则,不符合题意,若,则,此时对称轴,由,不合题意0.综上所述,只有符合条件.【点睛】本题主要考查了对数型、指数型的复合函数的单调性及最值问题。解题的关键是换元,将复杂的函数化为简单的函数,解决对数型的复合函数时要注意真数大于0这个隐含条件,属于难题.19、.【解析】根据条件得到,设圆心为,根据点点距列出式子即可,求得参数值解析:圆的圆心在轴上,设圆心为,由圆过点和,由可得,即,求得,可得圆心为,半径为,故圆的方程为.点睛:这个题目考查了圆的方程的求法,利用圆的定义得到圆上的点到圆心的距离相等,可列出式子.一般和圆有关的多数是利用圆的几何性质,垂径定理列出方程,利用切线的性质即切点和圆心的连线和切线垂直列式子.注意观察式子的特点20、(1)1;(2)2【解析】(1)由基本不等式求出最小值后可得所求最大值(2)凑出积为定值后由基本不等式求得最小值【详解】(1),则,,当且仅当,即时等号成立.所以的最大值为1(2)因为且,所以,当且仅当,即时等号成立.所以所求最小值为221、(1)(2)【解析】(1)利用换元法令,求得的表达式,代入即可求得参数,即可得的解析式;(2)根据函数单调性,即可求得在上的值域.【详解】(1)令,则,则.因为,所以,解得.故的解析式为.(2)由(1)知,在上为增函数.因为,,所以在上的值域为.【点睛】本题考查了换元法求二次函数的解析式,根据函数单调性求函数的值域,属于基础题.22、(1),(2)最小值为元【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 藤编工艺在生态旅游纪念品开发考核试卷
- 通讯设备租赁市场服务创新考核试卷
- 公路工程气候因素分析试题及答案
- 城市绿化管理管理制度
- 厨房面点卫生管理制度
- 安全监控系统管理制度
- 医院常用设备管理制度
- 工厂复工仓库管理制度
- 处理器架构比较试题及答案
- 大学保安门卫管理制度
- 马拉松赛事运营服务方案
- 跨学科学习:一种基于学科的设计、实施与评价
- 2020年江西省上饶市万年县中小学、幼儿园教师进城考试真题库及答案
- 小区燃气管道施工方案施工方法
- JTT664-2006 公路工程土工合成材料 防水材料
- 教学能力比赛学情分析图(源图可编辑)
- 幼儿园2024-2025学年保教工作计划
- 燕舞集团招聘试题
- 小学心理健康教育《积极心态(1)》优质课教案、教学设计
- 甬统表(工程表格全套)
- 软件架构与系统稳定性
评论
0/150
提交评论