安徽省蚌埠市第一中学2023-2024学年数学高一上期末复习检测试题含解析_第1页
安徽省蚌埠市第一中学2023-2024学年数学高一上期末复习检测试题含解析_第2页
安徽省蚌埠市第一中学2023-2024学年数学高一上期末复习检测试题含解析_第3页
安徽省蚌埠市第一中学2023-2024学年数学高一上期末复习检测试题含解析_第4页
安徽省蚌埠市第一中学2023-2024学年数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省蚌埠市第一中学2023-2024学年数学高一上期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.和函数是同一函数的是()A. B.C. D.3.表示不超过x的最大整数,例如,,,.若是函数的零点,则()A.1 B.2C.3 D.44.下列函数中,是奇函数且在其定义域内单调递增的是A. B.C. D.5.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°6.若函数在定义域上的值域为,则()A. B.C. D.7.已知x,y满足,求的最小值为()A.2 B.C.8 D.8.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.189.集合,集合或,则集合()A. B.C. D.10.若角的终边上一点,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是___.12.求值:2+=____________13.已知在同一平面内,为锐角,则实数组成的集合为_________14.函数的定义域为__________.15.已知某扇形的周长是,面积为,则该扇形的圆心角的弧度数是______.16.已知函数若方程恰有三个实数根,则实数的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且.(1)判断的奇偶性;(2)证明在上单调递增;(3)若不等式在上恒成立,求实数的取值范围.18.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:时)各分为5组[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定,初中学生平均每人每天课外阅读时间不少于半个小时.若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间,根据以上抽样调查数据,该校是否需要增加初中学生的课外阅读时间?并说明理由.19.已知,且在第三象限,(1)和(2).20.已知函数的定义域为.(1)求;(2)设集合,若,求实数的取值范围.21.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系,A的单件成本单位:元与销量y之间满足函数关系当产品A的售价在什么范围内时,能使得其销量不低于5万件?当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A2、D【解析】根据相同的函数定义域,对应法则,值域都相同可知ABC不符合要求,D满足.【详解】的定义域为,值域为,对于A,与的对应法则不同,故不是同一个函数;对于B,的值域为,故不是同一个函数;对于C,的定义域为,故不是同一个函数;对于D,,故与是同一个函数.故选:D3、B【解析】利用零点存在性定理判断的范围,从而求得.【详解】在上递增,,所以,所以.故选:B4、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,y=sinx,是正弦函数,在定义域上不是增函数;不符合题意;对于B,y=tanx,为正切函数,在定义域上不是增函数,不符合题意;对于C,y=x3,是奇函数且在其定义域内单调递增,符合题意;对于D,y=ex为指数函数,不是奇函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性5、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B6、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A7、C【解析】利用两点间的距离公式结合点到直线的距离公式即可求解.【详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.8、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C9、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.10、B【解析】由三角函数的定义即可得到结果.【详解】∵角的终边上一点,∴,∴,故选:B【点睛】本题考查三角函数的定义,考查诱导公式及特殊角的三角函数值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.12、-3【解析】利用对数、指数的性质和运算法则求解【详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【点睛】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用13、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.14、【解析】解不等式即可得出函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案为:.15、2【解析】由扇形的周长和面积,可求出扇形的半径及弧长,进而可求出该扇形的圆心角.【详解】设扇形的半径为,所对弧长为,则有,解得,故.故答案为:2.【点睛】本题考查扇形面积公式、弧长公式的应用,考查学生的计算求解能力,属于基础题.16、【解析】令f(t)=2,解出t,则f(x)=t,讨论k的符号,根据f(x)的函数图象得出t的范围即可【详解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)当k=0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,即f(f(x))﹣2=0无解,不符合题意;(2)当k>0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,f(x)无解,即f(f(x))﹣2=0无解,不符合题意;(3)当k<0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k综上,k的取值范围是(﹣1,]故答案为(﹣1,]【点睛】本题考查了函数零点个数与函数图象的关系,数形结合思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)详见解析(3)【解析】(1)运用代入法,可得m值,计算f(-x)与f(x)比较即可得到结论;(2)运用单调性的定义证明,注意取值、作差和变形、定符号和下结论(3)若不等式在上恒成立,所以在上恒成立,求即可得解.【详解】(1)即所以函数的定义域为所以为奇函数(2)设且,则因为且所以,所以即则在上单调递增(3)若不等式在上恒成立所以在上恒成立由(2)知在上递增所以所以【点睛】本题考查函数的奇偶性和单调性的判断和证明,考查不等式恒成立,采用分离参数是常用方法,属于中档题18、(1)720人(2)(3)需要增加,理由见解析【解析】(1)由分层抽样的特点可分别求得抽取的初中生、高中生人数,由频率分布直方图的性质可知初中生、高中生课外阅读时间在,小时内的频率,然后由频数样本容量频率可分别得初中生、高中生课外阅读时间在,小时内的样本学生数,最后将两者相加即可(2)记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,由频数样本容量频率组距频率可分别得初中生、高中生中,阅读时间不足10个小时的学生人数,然后用列举法表示出随机抽取3人的所有可能结果以及事件的结果,从而得(3)同一组中的数据用该组区间中点值作为代表来计算样本中的所有初中生平均每天阅读时间,并与30小时比较大小,若小于30小时,则需要增加,否则不需要增加【小问1详解】由分层抽样知,抽取的初中生有人,高中生有人初中生中,课外阅读时间在,小时内的频率为:,学生人数为人高中生中,课外阅读时间在,小时内的频率为:,学生人数约有人,全校学生中课外阅读时间在,小时内学生总人数为人【小问2详解】记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,初中生中,阅读时间不足10个小时的学生人数为人,高中生中,阅读时间不足10个小时的学生人数为人记这3名初中生为,,,这2名高中生为,,则从阅读时间不足10个小时的样本学生中随机抽取3人,所有可能结果共有10种,即,,,,,,,,,,而事件结果有7种,它们是:,,,,,,,至少抽到2名初中生的概率为【小问3详解】样本中的所有初中生平均每天阅读时间为:(小时),而(小时),,该校需要增加初中学生课外阅读时间19、(1),(2)【解析】(1)利用同角三角函数关系求解即可.(2)利用同角三角函数关系和诱导公式求解即可.【小问1详解】已知,且在第三象限,所以,【小问2详解】原式20、(1)A(2)【解析】(1)由函数的解析式分别令真数为正数,被开方数非负确定集合A即可;(2)分类讨论和两种情况确定实数的取值范围即可.【详解】(1)由,解得,由,解得,∴.(2)当时,函数在上单调递增.∵,∴,即.于是.要使,则满足,解得.∴.当时,函数在上单调递减.∵,∴,即.于是要使,则满足,解得与矛盾.∴.综上,实数的取值范围为.【点睛】本题主要考查函数定义域的求解,集合之间的关系与运算等知识,意在考查学生的转化能力和计算求解能力.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论