安徽定远示范高中2024届高一数学第一学期期末统考试题含解析_第1页
安徽定远示范高中2024届高一数学第一学期期末统考试题含解析_第2页
安徽定远示范高中2024届高一数学第一学期期末统考试题含解析_第3页
安徽定远示范高中2024届高一数学第一学期期末统考试题含解析_第4页
安徽定远示范高中2024届高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽定远示范高中2024届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.方程的解所在的区间是A B.C. D.2.已知:,:,若是的必要不充分条件,则实数的取值范围是()A. B.C. D.3.已知、、是的三个内角,若,则是A.钝角三角形 B.锐角三角形C.直角三角形 D.任意三角形4.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.5.已知函数的定义域和值域都是,则()A. B.C.1 D.6.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.7.已知函数:①y=2x;②y=log2x;③y=x-1;④y=;则下列函数图像(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②8.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.9.已知,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围是()A. B.C. D.11.已知角的终边经过点,则A. B.C.-2 D.12.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知圆:,为圆上一点,、、,则的最大值为______.14.函数且的图象恒过定点__________.15.已知向量满足,且,则与的夹角为_______16.函数的最大值是,则实数的取值范围是___________三、解答题(本大题共6小题,共70分)17.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?18.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.19.已知函数,.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值及相应的的值.20.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人:参加社会公益活动未参加社会公益活动参加社会实践活动304未参加社会实践活动83从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率;在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率21.已知角的顶点在坐标原点,始边与轴非负半轴重合,终边经过点(1)求,;(2)求的值22.在非空集合①,②,③这三个条件中任选一个,补充在下面问题中,已知集合______,使“”是“”的充分不必要条件,若问题中a存在,求a的值;若a不存在,请说明理由.(如果选择多个条件分别解答,按第一个解答计分)

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】设,则由指数函数与一次函数的性质可知,函数与的上都是递增函数,所以在上单调递增,故函数最多有一个零点,而,,根据零点存在定理可知,有一个零点,且该零点处在区间内,故选答案C.考点:函数与方程.2、C【解析】求解不等式化简集合,,再由题意可得,由此可得的取值范围【详解】解:由,即,解得或,所以或,,命题是命题的必要不充分条件,,则实数的取值范围是故选:C3、A【解析】依题意,可知B,C中有一角为钝角,从而可得答案详解】∵A是△ABC的一个内角,∴sinA>0,又sinAcosBtanC<0,∴cosBtanC<0,∴B,C中有一角为钝角,故△ABC为钝角三角形故选A【点睛】本题考查三角形的形状判断,求得B,C中有一角为钝角是判断的关键,属于中档题4、B【解析】化简得到,得到,进而得到,即可求解.【详解】由题意,函数,可得,可得,即,因为,所以.故选:B.5、A【解析】分和,利用指数函数的单调性列方程组求解.【详解】当时,,方程组无解当时,,解得故选:A.6、D【解析】根据题意可得不等式,解不等式可求得,由此可得结论.【详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.7、D【解析】图一与幂函数图像相对应,所以应④;图二与反比例函数相对应,所以应为③;图三与指数函数相对应,所以应为①;图四与对数函数图像相对应,所以应为②所以对应顺序为④③①②,故选D8、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.9、C【解析】根据充分条件和必要条件定义结合不等式的性质即可判断.【详解】若,则,所以充分性成立,若,则,所以必要性成立,所以“”是“”的充分必要条件,故选:C.10、C【解析】由已知可得.再由由点在圆内部或圆上可得.由此可解得点在以和为端点的线段上运动.由表示以和为端点的线段上的点与坐标原点连线的斜率可得选项【详解】函数恒过定点.将点代入直线可得,即由点在圆内部或圆上可得,即.或.所以点在以和为端点的线段上运动表示以和为端点的线段上的点与坐标原点连线的斜率.所以,.所以故选:C【点睛】关键点点睛:解决本题类型的问题,关键在于由已知条件得出所满足的可行域,以及明确所表示的几何意义.11、B【解析】按三角函数的定义,有.12、D【解析】先逐个求解所有5个三角形的面积,再根据要求计算概率.【详解】如图所示,,,,,的面积分别为,,将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以故选:D二、填空题(本大题共4小题,共20分)13、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.14、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.15、##【解析】根据平面向量的夹角公式即可求出【详解】设与的夹角为,由夹角余弦公式,解得故答案为:16、[-1,0]【解析】函数,当时,函数有最大值,又因为,所以,故实数的取值范围是三、解答题(本大题共6小题,共70分)17、(1)(2)4万件【解析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;小问2详解】解:当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13(万元).所以当工厂生产4万件产品时,可使盈利最多为13万元.18、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.19、(1),(2)时,,时,.【解析】(1)将函数化简得,可求函数的最小正周期;(2)由求出,进而求出函数在区间上的最大值和最小值及相应的的值.【小问1详解】所以.【小问2详解】因为,所以,所以,所以,当时,即,,当时,即,.20、(1);(2).【解析】从该班随机选1名学生,利用古典概型能求出该学生未参加社会公益活动也未参加社会实践活动的概率基本事件总数,被选中且未被选中包含的基本事件个数,由此能求出被选中且未被选中的概率【详解】解:从该班随机选1名学生,该学生既未参加社会公益活动也未参加社会实践活动的概率在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,基本事件总数,被选中且未被选中包含的基本事件个数,被选中且未被选中的概率【点睛】本题考查概率的求法,考查古典概型等基础知识,属于基础题21、(1)(2)1【解析】(1)根据三角函数的定义,计算即可得答案.(2)根据诱导公式,整理化简,代入,的值,即可得答案.【小问1详解】因为角终边经过点,所以,【小问2详解】原式22、答案见解析【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论