版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省名校高一上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.2.下列选项中,与最接近的数是A. B.C. D.3.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.4.已知是定义在上的单调函数,满足,则函数的零点所在区间为()A. B.C. D.5.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.186.已知f(x)=是R上的减函数,那么a的取值范围是()A.(0,1) B.C. D.7.现对有如下观测数据345671615131417记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则()A., B.,C., D.,8.圆的半径为,该圆上长为的弧所对的圆心角是A. B.C. D.9.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④10.把正方形沿对角线折起,当以,,,四点为顶点的三棱锥体积最大时,直线和平面所成角的大小为()A. B.C. D.11.已知,,,则、、的大小关系为()A. B.C. D.12.“”是“函数在内单调递增”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13._____.14.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积为_______________________.15.已知为偶函数,当时,,当时,,则不等式的解集为__________16.已知与是两个不共线的向量,且向量(+λ)与(-3)共线,则λ的值为_____.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.定义在(-1,1)上的奇函数为减函数,且,求实数a的取值范围.18.已知圆M与x轴相切于点(a,0),与y轴相切于点(0,a),且圆心M在直线上.过点P(2,1)直线与圆M交于两点,点C是圆M上的动点.(1)求圆M的方程;(2)若直线AB的斜率不存在,求△ABC面积的最大值;(3)是否存在弦AB被点P平分?若存在,求出直线AB的方程;若不存在,说明理由.19.已知函数,(且.)(1)求的定义域,并判断函数的奇偶性;(2)设,对于,恒成立,求实数m的取值范围20.已知函数(1)求的最小正周期;(2)求的单调递增区间21.已知函数是上的奇函数(1)求;(2)用定义法讨论在上的单调性;(3)若在上恒成立,求的取值范围22.已知函数,且求函数的定义域;求满足实数x的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据直线的斜率与倾斜角的关系即可求解.【详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.2、C【解析】,该值接近,选C.3、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.4、C【解析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,,故,即因为,,由于,即有,所以故,即的零点所在区间为故选:C【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题5、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C6、B【解析】要使函数在上为减函数,则要求①当,在区间为减函数,②当时,在区间为减函数,③当时,,综上①②③解不等式组即可.【详解】令,.要使函数在上为减函数,则有在区间上为减函数,在区间上为减函数且,∴,解得.故选:B【点睛】考查根据分段函数的单调性求参数的问题,根据单调性的定义,注意在分段点处的函数值的关系,属于中档题.7、C【解析】利用平均数以及方差的计算公式即可求解.【详解】,,,,故,故选:C【点睛】本题考查了平均数与方差,需熟记公式,属于基础题.8、B【解析】由弧长公式可得:,解得.考点:弧度制.9、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.10、C【解析】当平面平面时,三棱锥体积最大,由此能求出结果【详解】解:如图,当平面平面时,三棱锥体积最大取的中点,则平面,故直线和平面所成的角为,故选:【点睛】本题考查直线与平面所成角的求法,解题时要注意空间思维能力的培养,属于中档题11、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.12、A【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可.【详解】解:因为函数在内单调递增,所以,因为是的真子集,所以“”是“函数在内单调递增”的充分而不必要条件故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题14、【解析】由已知得该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,根据圆锥和球体的体积公式可得答案.【详解】该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为,设制成的大铁球半径为,则,得,故大铁球的表面积为.故答案为:.15、【解析】求出不等式在的解,然后根据偶函数的性质可得出不等式在上的解集.【详解】当时,令,可得,解得,此时;当时,令,解得,此时.所以,不等式在的解为.由于函数为偶函数,因此,不等式的解集为.故答案为:.【点睛】本题考查分段函数不等式的求解,同时也涉及了函数奇偶性的应用,考查运算求解能力,属于中等题.16、-【解析】由向量共线可得+λ=k((-3),计算即可.【详解】由向量共线可得+λ=k((-3),即+λ=k-3k,∴解得λ=-.故答案为:-三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、【解析】结合奇函数性质以及单调性,去掉外层函数,变成一元二次不等式进行求解.【详解】由题即根据奇函数定义可知原不等式为又因为单调递减函数,故,解得或又因为函数定义域为故,解得,所以综上得的范围为.18、(1)(2)(3)存在,方程为【解析】(1)根据圆与坐标轴相切表示出圆心坐标,结合已知可解;(2)注意到当点C到直线AB距离最大值为圆心到直线距离加半径,然后可解;(3)根据圆心与弦的中点的连线垂直弦,或利用点差法可得.【小问1详解】∵圆M与x轴相切于点(a,0),与y轴相切于点(0,a),∴圆M的圆心为M(a,a),半径.又圆心M在直线上,∴,解得.∴圆M的方程为:.【小问2详解】当直线AB的斜率不存在时,直线AB的方程为,∴由,解得.∴.易知圆心M到直线AB的距离,∴点C到直线AB的最大距离为.∴△ABC面积的最大值为.【小问3详解】方法一:假设存在弦AB被点P平分,即P为AB的中点.又∵,∴.又∵直线MP的斜率为,∴直线AB的斜率为-.∴.∴存在直线AB的方程为时,弦AB被点P平分.方法二:由(2)易知当直线AB的斜率不存在时,,∴此时点P不平分AB.当直线AB的斜率存在时,,假设点P平分弦AB.∵点A、B是圆M上的点,设,.∴由点差法得.由点P是弦AB的中点,可得,∴.∴∴存在直线AB的方程为时,弦AB被点P平分.19、(1)定义域为;为奇函数;(2)【解析】(1)由函数的定义域满足,可得其定义域,由可判断其奇偶性.(2)先由对数型函数的定义域可得,当时,由对数函数的单调性可得在上恒成立,即在上恒成立,即可得出答案.【详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;(2)对于,恒成立,由,则,又,则由,即在上恒成立.由,即在上恒成立.由,可得时,y取得最小值8,则,因此可得,时,的取值范围是:【点睛】关键点睛:本题考查对数型函数的定义域和奇偶性的判断,不等式恒成立求参数问题,解答本题的关键是由对数型函数的定义域则满足,可得,然后将问题化为由,即在上恒成立,属于中档题.20、(1)(2)单调递增区间是【解析】(1)根据公式可求函数的最小正周期;(2)利用整体法可求函数的增区间.【小问1详解】∵,∴最小正周期【小问2详解】令,解得,∴的单调递增区间是21、(1);(2)是上的增函数;(3).【解析】(1)利用奇函数的定义直接求解即可;(2)用函数的单调性的定义,结合指数函数的单调性直接求解即可;(3)利用函数的奇函数的性质、单调性原问题可以转化为在上恒成立,利用换元法,再转化为一元二次不等式恒成立问题,分类讨论,最后求出的取值范围.【详解】(1)函数是上的奇函数即即解得;(2)由(1)知设,则故,,故即是上的增函数(3)是上的奇函数,是上的增函数在上恒成立等价于等价于在上恒成立即在上恒成立“*”令则“*”式等价于对时恒成立“**”①当,即时“**”为对时恒成立②当,即时,“**”对时恒成立须
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度体育赛事赞助合同(赞助金额与权益回报)2篇
- 2024年度出版合同稿件内容与出版时间
- 2024年度人力资源外包合同:某施工单位委托人力资源公司提供粉刷工人2篇
- 2024年度白灰售后服务合同
- 2024年度盘锦公司委托合同
- 2024年度智能供应链管理系统建设项目合同
- 七年级思品课件
- 2024年度电影院3D眼镜供应与更换合同
- 2024年度建筑工程咨询服务合同3篇
- 2024年度大厦玻璃幕墙检测与维护合同
- 《子宫脱垂病人的护理查房》PPT课件
- 行政伦理学-试题及答案
- 卫生院医疗质量管理与考核细则
- 华为研发类员工绩效考核表(PBC模板)
- 乡村振兴战略项目经费绩效评价指标体系及分值表
- 多层及高层钢筋混凝土房屋
- 超星世界地理尔雅答案 杜德斌
- 病历书写规范pptPPT课件
- 语言学新知与中学语文教学
- 断路器失灵保护及远跳详解
- 草诀百韵歌原文及解释
评论
0/150
提交评论