版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届豫南九校高一上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设函数,则下列结论错误的是A.函数的值域为 B.函数是奇函数C.是偶函数 D.在定义域上是单调函数2.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.3.设,则等于()A. B.C. D.4.已知,,则()A. B.C. D.5.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是()A. B.C. D.6.已知函数,当时.方程表示的直线是()A. B.C. D.7.设P为函数图象上一点,O为坐标原点,则的最小值为()A.2 B.C. D.8.若函数,在区间上单调递增,在区间上单调递减,则()A.1 B.C.2 D.39.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A①和② B.②和③C.③和④ D.②和④10.若直线与直线互相垂直,则等于(
)A.1 B.-1C.±1 D.-211.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.412.已知点A(2,0)和点B(﹣4,2),则|AB|=()A. B.2C. D.2二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知球有个内接正方体,且球的表面积为,则正方体的边长为__________14.已知函数,则_________15.扇形半径为,圆心角为60°,则扇形的弧长是____________16.两平行直线与之间的距离______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知.(1)化简;(2)若是第四象限角,且,求的值.18.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.19.已知函数为奇函数.(1)求实数a的值;(2)求的值.20.甲地到乙地的距离大约为240,某汽车公司为测试一种新型号的汽车的耗油量与行驶速度的关系,进行了多次实地测试,收集到了该车型的每小时耗油量Q(单位:)与速度v(单位:)()的数据如下表:v0406080120Q0.0006.6678.12510.00020.000为了描述汽车每小时耗油量与速度的关系,现有以下三种模型供选择:①;②;③.(1)选出你认为最符合实际的函数模型,并说明理由;(2)从甲地到乙地,该型号的汽车应以什么速度行驶才能使总耗油量最少?21.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.22.对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为和,即,,那么,(1)求函数的“稳定点”;(2)求证:;(3)若,且,求实数的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据分段函数的解析式研究函数的单调性,奇偶性,值域,可得结果.【详解】当时,为增函数,所以,当时,为增函数,所以,所以的值域为,所以选项是正确的;又,,所以在定义域上不是单调函数,故选项是错误的;因为当时,,所以,当时,,所以,所以在定义域内恒成立,所以为奇函数,故选项是正确的;因为恒成立,所以函数为偶函数,故选项是正确的.故选:D【点睛】本题考查了分段函数的单调性性,奇偶性和值域,属于基础题.2、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题3、B【解析】由全集,以及与,找出与的补集,求出补集的并集即可【详解】,,则故选:B4、B【解析】应用同角关系可求得,再由余弦二倍角公式计算.【详解】因,所以,所以,所以.故选:B.【点睛】本题考查同角间的三角函数关系,考查余弦的二倍角公式.求值时要注意角的取值范围,以确定函数值的正负.5、B【解析】依次执行循坏结构,验证输出结果即可.【详解】根据程序框图,运行结构如下:第一次循环,,第二次循环,,第三次循环,,此时退出循环,故应填:.故选:B.6、C【解析】先利用对数函数的性质得到所以,再利用直线的斜率和截距判断.【详解】因为时,,所以则直线的斜率为,在轴上的截距故选:C7、D【解析】根据已知条件,结合两点之间的距离公式,以及基本不等式的公式,即可求解【详解】为函数的图象上一点,可设,,当且仅当,即时,等号成立故的最小值为故选:8、B【解析】根据以及周期性求得.【详解】依题意函数,在区间上单调递增,在区间上单调递减,则,即,解得.故选:B9、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题10、C【解析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题11、D【解析】由得,又由得函数为偶函数,所以选D12、D【解析】由平面两点的距离公式计算可得所求值.【详解】由点A(2,0)和点B(﹣4,2),所以故选:D【点睛】本题考查平面上两点间的距离,直接用平面上两点间的距离公式解决,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】设正方体的棱长为x,则=36π,解得x=故答案为14、【解析】运用代入法进行求解即可.【详解】,故答案为:15、【解析】根据弧长公式直接计算即可.【详解】解:扇形半径为,圆心角为60°,所以,圆心角对应弧度为.所以扇形的弧长为.故答案为:16、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)根据诱导公式进行求解即可;(2)根据同角三角函数关系式进行求解即可.【小问1详解】【小问2详解】因为是第四象限角,且,.因此,.18、【解析】因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.19、(1)(2)【解析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算.【详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【点睛】本题考查函数的奇偶性,考查对数恒等式,属于基础题.20、(1)最符合实际的模型为①,理由见解析(2)从甲地到乙地,该型号的汽车以80的速度行驶时能使总耗油量最少【解析】(1)根据定义域和单调性来判断;(2)根据行驶时间与单位时间的耗油量得到总耗油量的函数表达式,再求最小值的条件即可.【小问1详解】依题意,所选的函数必须满足两个条件:定义域为,且在区间上单调递增.由于模型③定义域不可能是.而模型②在区间上是减函数.因此,最符合实际的模型为①.【小问2详解】设从甲地到乙地行驶总耗油量为y,行驶时间为t,依题意有.∵,,∴,它是一个关于v的开口向上的二次函数,其对称轴为,且,∴当时,y有最小值.由题设表格知,当时,,,.∴从甲地到乙地,该型号的汽车以80km/h的速度行驶时能使总耗油量最少.21、(1)(2)【解析】(1)通过已知得到方程组,解方程组即得二次函数的解析式,再利用二次函数的图象求函数的值域得解;(2)求出,等价于,求出二次函数最小值即得解.【小问1详解】解:设、∴,∴,∴,,又,∴,∴.∵对称轴为直线,,,,∴函数的值域.【小问2详解】解:由(1)可得:∵直线与函数的图像没有公共点∴,当时,∴,∴.22、(1)“稳定点”;(2)见解析;(3)【解析】本题拿出一个概念来作为新型定义题,只需要去对定义的理解就好,要求函数的“稳定点”只需求方程中的值,即为“稳定点”若,有这是不动点的定义,此时得出,,如果,则直接满足.先求出即存在“不动点”的条件,同理取得到存在“稳定点”的条件,而两集合相等,即条件所求出的结果一直,对结果进行分类讨论.【详解】(1)由有,得:,所以函数的“稳定点”为;(2)证明:若,则,显然成立;若,设,有,则有,所以,故(3)因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苗圃土地租赁合同(2024版)
- 购房合同贷款
- 考勤课件教学课件
- 2024年度教育培训合同标的为在线课程开发3篇
- 教师劳动合同
- 二零二四年份新能源汽车充电设施建设合同
- 《汽车维修接待实务》 课件 学习情境三 接待前准备
- 团队协作的课件
- 2024年度工程款清算补充协议2篇
- 租房合同标准版可打印
- 大学语文人文思考与写作实践智慧树知到期末考试答案章节答案2024年江苏大学扬州大学
- (完整word版)英语四级单词大全
- 16J607-建筑节能门窗
- 三级动火许可证
- 辅助器具的使用指导.ppt
- 希沃使用手册(共17页)
- 某单桩承载力及桩基沉降计算表格
- 领导干部接访下访制度文档
- 临床诊疗指南及操作规范
- 唐诗宋词鉴赏辞典pdf.下载-《唐宋词鉴赏辞典(唐五代北宋)》最新txt全集下载
- 中石油安全经验分享
评论
0/150
提交评论