2024届四川省剑门关高级中学高一上数学期末考试试题含解析_第1页
2024届四川省剑门关高级中学高一上数学期末考试试题含解析_第2页
2024届四川省剑门关高级中学高一上数学期末考试试题含解析_第3页
2024届四川省剑门关高级中学高一上数学期末考试试题含解析_第4页
2024届四川省剑门关高级中学高一上数学期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省剑门关高级中学高一上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在边长为3的菱形中,,,则=()A. B.-1C. D.2.函数的定义域是()A. B.C D.3.“两个三角形相似”是“两个三角形三边成比例”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.5.的值是()A B.C. D.6.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得()A. B.C. D.7.当点在圆上变动时,它与定点的连线的中点的轨迹方程是()A. B.C. D.8.设m、n是不同的直线,、、是不同的平面,有以下四个命题:(1)若、,则(2)若,,则(3)若、,则(4)若,,则其中真命题的序号是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)9.若,,则等于()A. B.C. D.10.函数的单调递减区间是()A.() B.()C.() D.()二、填空题:本大题共6小题,每小题5分,共30分。11.设x,.若,且,则的最大值为___12.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx213.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-114.在直三棱柱中,若,则异面直线与所成的角等于_________.15.已知实数,执行如图所示的流程图,则输出的x不小于55的概率为________16.______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数,若在其定义域内存在实数,,使得成立,则称是“跃点”函数,并称是函数的1个“跃点”(1)求证:函数在上是“1跃点”函数;(2)若函数在上存在2个“1跃点”,求实数的取值范围;(3)是否同时存在实数和正整数使得函数在上有2022个“跃点”?若存在,请求出和满足的条件;若不存在,请说明理由18.某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?19.若实数,,满足,则称比远离.(1)若比远离,求实数的取值范围;(2)若,,试问:与哪一个更远离,并说明理由.20.已知:,.设函数求:(1)的最小正周期;(2)的对称中心,(3)若,且,求21.如图,一个半径为4米的筒车按逆时针方向每分钟转1圈,筒车的轴心O距水面的高度为2米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数).若以盛水筒W刚浮出水面时开始计算时间,则d与时间t(单位:分钟)之间的关系为.(1)求的值;(2)求盛水筒W出水后至少经过多少时间就可到达最高点?(3)某时刻(单位:分钟)时,盛水筒W在过O点的竖直直线的左侧,到水面的距离为5米,再经过分钟后,盛水筒W是否在水中?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项.【详解】.故选:C.【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题.2、B【解析】解不等式组即可得定义域.【详解】由得:所以函数的定义域是.故选:B3、C【解析】根据相似三角形性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.4、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.5、C【解析】由,应用诱导公式求值即可.【详解】.故选:C6、C【解析】先求出,再根据二倍角余弦公式求出,然后根据诱导公式求出.【详解】由题意可得:,且,所以,所以,故选:C【点睛】本题考查了二倍角的余弦公式和诱导公式,属于基础题.7、D【解析】设中点的坐标为,则,利用在已知的圆上可得的中点的轨迹方程.【详解】设中点的坐标为,则,因为点在圆上,故,整理得到.故选:D.【点睛】求动点的轨迹方程,一般有直接法和间接法,(1)直接法,就是设出动点的坐标,已知条件可用动点的坐标表示,化简后可得动点的轨迹方程,化简过程中注意变量的范围要求.(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.8、D【解析】故选D.9、D【解析】根据三角函数的诱导公式即可化简求值.【详解】∵,,,,,.故选:D.10、A【解析】根据余弦函数单调性,解得到答案.【详解】解:,令,,解得,,故函数的单调递减区间为;故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、##1.5【解析】由化简得,再由基本不等式可求得,从而确定最大值【详解】,,,,,,,当且仅当时即取等号,,解得,故,故的最大值为,故答案为:12、①.34##0.75②.-【解析】利用三角函数的定义和诱导公式求出结果【详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,13、D【解析】设平均增长率为x,由题得故填.14、【解析】如图以点为坐标原点,分别以为轴建立空间直角坐标系,利用空间向量求解即可.【详解】解:因为三棱柱为直三棱柱,且,所以以点为坐标原点,分别以为轴建立空间直角坐标系,设,则,所以,所以,因为异面直线所成的角在,所以异面直线与所成的角等于,故答案为:【点睛】此题考查异面直线所成角,利用了空间向量进行求解,属于基础题.15、【解析】设实数x∈[1,9],经过第一次循环得到x=2x+1,n=2,经过第二循环得到x=2(2x+1)+1,n=3,经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x,输出的值为8x+7,令8x+7⩾55,得x⩾6,由几何概型得到输出的x不小于55的概率为.故答案为.16、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见详解(2)(3)存在,或或【解析】(1)将要证明问题转化为方程在上有解,构造函数转化为函数零点问题,结合零点存在性定理可证;(2)原问题等价于方程在由两个根,然后构造二次函数,转化为零点分布问题可解;(3)将问题转化为方程在上有2022个实数根,再转化为两个函数交点个数问题,然后可解.【小问1详解】因为整理得,令,因为,所以在区间有零点,即存在,使得,即存在,使得,所以,函数在上是“1跃点”函数【小问2详解】函数在上存在2个“1跃点”方程在上有两个实数根,即在上有两个实数根,令,则解得或,所以的取值范围是【小问3详解】由,得,即因为函数在上有2022个“跃点”,所以方程在上有2022个解,即函数与的图象有2022个交点.所以或或即或或18、(1);(2)万件.【解析】(1)由题意,分别写出与对应的函数解析式,即可得分段函数解析式;(2)当时,利用二次函数的性质求解最大值,当时,利用基本不等式求解最大值,比较之后得整个范围的最大值.【详解】解:(1)当,时,当,时,∴(2)当,时,,∴当时,取得最大值(万元)当,时,当且仅当,即时等号成立.即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元【点睛】与函数相关的应用题在求解的过程中需要注意函数模型的选择,注意分段函数在应用题中的运用,求解最大值时注意利用二次函数的性质以及基本不等式求解.19、(1);(2)比更远离,理由见解析.【解析】(1)由绝对值的几何意义可得,即可求的取值范围;(2)只需比较大小,讨论、分别判断代数式的大小关系,即知与哪一个更远离.【小问1详解】由比远离,则,即.∴或,得:或.∴的取值范围是.【小问2详解】因为,有,因为,所以从而,①当时,,即;②当时,,又,则∴,即综上,,即比更远离20、(1);(2)(k∈Z);(3)或.【解析】(1)解:由题意,,(1)函数的最小正周期为;(2),得,所以对称中心;(3)由题意,,得或,所以或点睛:本题考查三角函数的恒等关系的综合应用.本题中,由向量的数量积,同时利用三角函数化简的基本方法,得到,利用三角函数的性质,求出周期、对称中心等21、(1);(2)分钟;(3)再经过分钟后盛水筒不在水中.【解析】(1)先结合题设条件得到,,求得,再利用初始值计算初相即可;(2)根据盛水筒达到最高点时,代入计算t值,再根据,得到最少时间即可;(3)先计算时,根据题意,利用同角三角函数的平方关系求,再由分钟后,进而计算d值并判断正负,即得结果.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论