2024届黔南市重点中学数学高一上期末质量跟踪监视模拟试题含解析_第1页
2024届黔南市重点中学数学高一上期末质量跟踪监视模拟试题含解析_第2页
2024届黔南市重点中学数学高一上期末质量跟踪监视模拟试题含解析_第3页
2024届黔南市重点中学数学高一上期末质量跟踪监视模拟试题含解析_第4页
2024届黔南市重点中学数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黔南市重点中学数学高一上期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)2.如图,是全集,是子集,则阴影部分表示的集合是()A. B.C. D.3.函数的最小正周期是A. B.C. D.4.函数,的最小正周期是()A. B.C. D.5.方程的解所在区间是()A. B.C. D.6.已知集合A={1,2,3},B={x∈N|x≤2},则A∪B=()A.{2,3} B.{0,1,2,3}C.{1,2} D.{1,2,3}7.如图()四边形为直角梯形,动点从点出发,由沿边运动,设点运动的路程为,面积为.若函数的图象如图(),则的面积为()A. B.C. D.8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A①和② B.②和③C.③和④ D.②和④9.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.10.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.11.设函数的部分图象如图所示,若,且,则()A. B.C. D.12.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则二、填空题(本大题共4小题,共20分)13.在中,角、、所对的边为、、,若,,,则角________14.已知函数,且,则__________15.已知函数,则____16.函数y=的定义域是______.三、解答题(本大题共6小题,共70分)17.已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积.18.(1)求的值;(2)求的值19.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.20.2015年10月,实施了30多年的独生子女政策正式宣告终结,党的十八届五中全会公报宣布在我国全面放开二胎政策.2021年5月31日,中共中央政治局召开会议,会议指出进一步优化生育政策,实施一对夫妻可以生育三个子女政策及配套支持措施,有利于改善我国人口结构,落实积极应对人口老龄化国家战略,保持我国人力资源禀赋优势.某镇2021年1月,2月,3月新生儿的人数分别为52,61,68,当年4月初我们选择新生儿人数和月份之间的下列两个函数关系式①;②(,,,,都是常数),对2021年新生儿人数进行了预测.(1)请你利用所给的1月,2月,3月份数据,求出这两个函数表达式;(2)结果该地在4月,5月,6月份的新生儿人数是74,78,83,你认为哪个函数模型更符合实际?并说明理由.(参考数据:,,,,)21.已知函数(I)求函数图象的对称轴方程;(II)求函数的最小正周期和值域.22.已知集合,.(1)当时,求,;(2)若,且“”是“”的充分不必要条件,求实数的取值范围.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【点睛】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题2、C【解析】利用阴影部分所属的集合写出阴影部分所表示的集合【详解】解:由图知,阴影部分在集合中,在集合中,但不在集合中,故阴影部分所表示的集合是.故选:C.3、D【解析】分析:直接利用周期公式求解即可.详解:∵,,∴.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.4、C【解析】利用正弦型函数周期公式直接计算作答.【详解】函数的最小正周期.故选:C5、C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵,∴,,,,∴,∵函数的图象是连续的,∴函数的零点所在的区间是.故选C【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.6、B【解析】先求出集合B,再求A∪B.【详解】因为,所以.故选:B7、B【解析】由题意,当在上时,;当在上时,图()在,时图象发生变化,由此可知,,根据勾股定理,可得,所以本题选择B选项.8、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题9、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.10、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A11、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C12、C【解析】结合特殊值、差比较法确定正确选项.【详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C二、填空题(本大题共4小题,共20分)13、.【解析】利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.14、或【解析】对分和两类情况,解指数幂方程和对数方程,即可求出结果.【详解】当时,因为,所以,所以,经检验,满足题意;当时,因为,所以,即,所以,经检验,满足题意.故答案为:或15、16、【解析】令,则,所以,故填.16、【解析】要使函数有意义,需满足,函数定义域为考点:函数定义域三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)根据为等边三角形得出,(2)代入弧长公式和面积公式计算.【详解】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.【点睛】本题主要考查了扇形的相关知识点,弦长、弧长、面积等,属于基础题,解题的关键是在于公式的熟练运用.18、(1);(2)【解析】(1)根据指数幂的运算性质,化简计算,即可得答案.(2)根据对数的运算性质,化简计算,即可得答案.【详解】(1)原式;(2)原式19、(1),;(2).【解析】(1)求出集合,再由集合的交、并、补运算即可求解.(2)根据集合的包含关系列出不等式:且,解不等式即可求解.【详解】(1)∵,∴,∴..∴∴,∴;(2)由(1)知,由,可得且,解得.综上所述:的取值范围是20、(1),(2)函数②更符合实际,理由见解析【解析】(1)根据三组数据代入求解即可;(2)分别代入(1)问求出的解析式中,检验与实际的差异,即可判断模型更符合实际.【小问1详解】解:(1)由1~3月的新生儿人数,可得对于函数①:得到代入函数②:得到,继而得到,∴【小问2详解】(2)当时,代入函数①,分别得.当时代入函数②,分别得可见函数②更符合实际.21、(I)(II)周期为,值域为【解析】(I)化简得,进而可求解(II)化简,进而可求解【详解】(I)因为,,所以,由得,对称轴为(II)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论