版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市八校数学高一上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱 B.圆锥C.四面体 D.三棱柱2.命题:,命题:(其中),那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.管理人员从一池塘内随机捞出40条鱼,做上标记后放回池塘.10天后,又从池塘内随机捞出70条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内鱼的总条数是()A.2800 B.1800C.1400 D.12004.已知,那么下列结论正确的是()A. B.C. D.5.函数与的图象在上的交点有()A.个 B.个C.个 D.个6.已知角的终边过点,则()A. B.C. D.7.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.8.下列函数中,在区间上是增函数的是()A. B.C. D.9.幂函数在上是减函数.则实数的值为A.2或 B.C.2 D.或110.某几何体的三视图如图所示,则它的体积是A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若存在,使得,则的取值范围为_____________.12.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积为_______________________.13.某房屋开发公司用14400万元购得一块土地,该地可以建造每层的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层整幢楼房每平方米建筑费用提高640元.已知建筑5层楼房时,每平方米建筑费用为8000元,公司打算造一幢高于5层的楼房,为了使该楼房每平米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成____________层,此时,该楼房每平方米的平均综合费用最低为____________元14.已知,,,则________15.函数且的图象恒过定点__________.16.已知函数则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:()0.5+(-3)-1÷0.75-2-;(2)设0<a<1,解关于x的不等式.18.已知函数在上最大值为3,最小值为(1)求的解析式;(2)若,使得,求实数m的取值范围19.已知的三个内角所对的边分别为,且.(1)角的大小;(2)若点在边上,且,,求的面积;(3)在(2)的条件下,若,试求的长.20.某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:月份用气量(立方米)煤气费(元)144.0022514.0033519.00该市煤气收费的方法是:煤气费=基本费+超额费+保险费若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元(1)根据上面的表格求A,B,C的值;(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元21.如图,在长方体中,,是与的交点.求证:(1)平面;(2)平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】因为圆柱的三视图有两个矩形,一个圆,正视图不可能是三角形,而圆锥、四面体(三棱锥)、三棱柱的正视图都有可能是三角形,所以选A.考点:空间几何体的三视图.2、A【解析】根据充分性、必要性的定义,结合特例法进行判断即可.【详解】当时,,所以由能推出,当时,显然当时,满足,但是不成立,因此是的充分不必要条件,故选:A3、C【解析】由从池塘内捞出70条鱼,其中有标记的有2条,可得所有池塘中有标记的鱼的概率,结合池塘内具有标记的鱼一共有40条鱼,按照比例即得解.【详解】设估计该池塘内鱼的总条数为,由题意,得从池塘内捞出70条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:,又因为池塘内具有标记的鱼一共有40条鱼,所以,解得,即估计该池塘内共有条鱼故选:C4、B【解析】根据不等式的性质可直接判断出结果.【详解】,,知A错误,B正确;当时,,C错误;当时,,D错误.故选:B.5、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.6、A【解析】根据三角函数的定义计算可得;【详解】解:因为角终边过点,所以;故选:A7、C【解析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C8、B【解析】根据函数单调性的定义和性质分别进行判断即可【详解】解:对于选项A.的对称轴为,在区间上是减函数,不满足条件对于选项B.在区间上是增函数,满足条件对于选项C.在区间上是减函数,不满足条件对于选项D.在区间上是减函数,不满足条件故满足条件的函数是故选:B【点睛】本题主要考查函数单调性的判断,要求熟练掌握常见函数的单调性,属基础题9、B【解析】由题意利用幂函数的定义和性质可得,由此解得的值【详解】解:由于幂函数在时是减函数,故有,解得,故选:【点睛】本题主要考查幂函数的定义和性质应用,属于基础题10、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.12、【解析】由已知得该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,根据圆锥和球体的体积公式可得答案.【详解】该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为,设制成的大铁球半径为,则,得,故大铁球的表面积为.故答案为:.13、①.15②.24000【解析】设公司应该把楼建成层,可知每平方米的购地费用,已知建筑5层楼房时,每平方米建筑费用为8000元,从中可得出建层的每平方米的建筑费用,然后列出式子求得其最小值,从而可求得答案【详解】设公司应该把楼建成层,则由题意得每平方米购地费用为(元),每平方米的建筑费用为(元),所以每平方米的平均综合费用为,当且仅当,即时取等号,所以公司应把楼层建成15层,此时,该楼房每平方米的平均综合费用最低为24000元,故答案为:15,2400014、【解析】由诱导公式将化为,再由,根据两角差的正弦公式,即可求出结果.【详解】因,所以,,又,,所以,,所以,,所以.故答案为【点睛】本题主要考查简单的三角恒等变换,熟记两角差的正弦公式以及诱导公式,即可求解,属于常考题型.15、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.16、5【解析】先求出,再根据该值所处范围代入相应的解析式中计算结果.【详解】由题意可得,则,故答案为:5.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2){x|x>1}【解析】(1)根据指数幂的运算性质,化简求值;(2)利用指数函数的单调性,即可求解不等式.【详解】(1)原式(2)因为0<a<1,所以y=ax在(-∞,+∞)上为减函数,因为,所以2x2-3x+2<2x2+2x-3,解得x>1.故x的解集为{x|x>1}.18、(1)(2)【解析】(1)根据的最值列方程组,解方程组求得,进而求得.(2)利用分离常数法,结合基本不等式求得的取值范围.【小问1详解】的开口向上,对称轴为,所以在区间上有:,即,所以.【小问2详解】依题意,使得,即,由于,,当且仅当时等号成立.所以.19、(1);(2);(3).【解析】(1)由条件知,结合正弦定理得,整理得,可得,从而得.(2)由,得.在中,由正弦定理得.在中,由余弦定理可得.所以.(3)由,可得.在中,由余弦定理得试题解析:(1),由正弦定理得,∴,∴,∵,∴,∵,∴.(2)由,得,在中,由正弦定理知,∴,解得,设,在中,由余弦定理得,∴,整理得解得,∴;(3)∵,∴,在中,由余弦定理得∴.20、(1);(2).【解析】解:(1)月份的用气量没有超过最低额度,所以月份的用气量超过了最低额度,所以,解得(2)当时,需付费用为元当时,需付费用为元所以应交的煤气费考点:函数解析式的求解点评:解决的关键是根据实际问题,将其转化为数学模型,然后得到解析式,求解运算,属于基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《计算机公共基础》课件
- 2025年度南京办公室装修项目造价咨询合同3篇
- 2025年度燃气行业员工离职经济补偿及争议处理合同-@-1
- 课题申报参考:逆向跨国并购后企业内部控制合规管理模式构建研究
- 二零二五年度国际能源资源合作合同4篇
- 课题申报参考:面向社交网络大数据的沂蒙精神传播态势及优化路径研究
- 2025版精密机床购置及售后服务合同2篇
- 二零二五年度医疗健康商标转让与知识产权合同
- 2025年度个人与公司间技术秘密保护协议
- 2025版内衣品牌跨界合作营销合同4篇
- 如何提高售后服务的快速响应能力
- 北师大版 2024-2025学年四年级数学上册典型例题系列第三单元:行程问题“拓展型”专项练习(原卷版+解析)
- 2023年译林版英语五年级下册Units-1-2单元测试卷-含答案
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 施工管理中的文档管理方法与要求
- DL∕T 547-2020 电力系统光纤通信运行管理规程
- 种子轮投资协议
- 员工工资条模板
- 执行依据主文范文(通用4篇)
- 浙教版七年级数学下册全册课件
- 华为携手深圳国际会展中心创建世界一流展馆
评论
0/150
提交评论