版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古自治区包头市第一机械制造有限公司第一中学数学高一上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.2.已知,则的值为()A. B.C. D.3.函数的单调递减区间是()A. B.C. D.4.若直线与直线互相垂直,则等于(
)A.1 B.-1C.±1 D.-25.已知的值为A.3 B.8C.4 D.6.命题“x0,x2x0”的否定是()A.x0,x2x0 B.x0,x2x0C.x0,x2x0 D.x0,x2x07.若两直线与平行,则它们之间的距离为A. B.C. D.8.函数在区间上的图象可能是()A. B.C. D.9.已知,,,则大小关系为()A. B.C. D.10.如果且,那么直线不经过()A第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.如果,且,则的化简为_____.12.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________13.已知函数若互不相等,且,则的取值范围是14.已知直线,互相平行,则__________.15.已知,则__________16.不等式tanx+三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求在闭区间的最大值和最小值;(2)设函数对任意,有,且当时,.求在区间上的解析式.18.函数.(1)用五点作图法画出函数一个周期图象,并求函数的振幅、周期、频率、相位;(2)此函数图象可由函数怎样变换得到.19.已知函数为偶函数,且图象的相邻两对称轴间的距离为(1)求的解析式;(2)将函数的图象向右平移个单位长度,再把横坐标缩小为原来的(纵坐标不变),得到函数的图象,若在上有两个不同的根,求m的取值范围20.设集合存在正实数,使得定义域内任意x都有.(1)若,证明;(2)若,且,求实数a的取值范围;(3)若,,且、求函数的最小值.21.如图,已知直角梯形中,且,又分别为的中点,将△沿折叠,使得.(Ⅰ)求证:AE⊥平面CDE;(Ⅱ)求证:FG∥平面BCD;(Ⅲ)在线段AE上找一点R,使得平面BDR⊥平面DCB,并说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C2、B【解析】在所求分式的分子和分母中同时除以,结合两角差的正切公式可求得结果.【详解】.故选:B.3、D【解析】解不等式,即可得出函数的单调递减区间.【详解】解不等式,得,因此,函数的单调递减区间为.故选:D.【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题.4、C【解析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题5、A【解析】主要考查指数式与对数式的互化和对数运算解:6、B【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题“x0,x2x0”的否定是:“x0,x2x0”.故选:B7、D【解析】根据两直线平行求得值,利用平行线间距离公式求解即可【详解】与平行,,即直线为,即故选D【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,8、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C9、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.10、C【解析】由条件可得直线的斜率的正负,直线在轴上的截距的正负,进而可得直线不经过的象限【详解】解:由且,可得直线斜率为,直线在y轴上的截距,故直线不经过第三象限,故选C【点睛】本题主要考查确定直线位置的几何要素,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:12、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.13、(10,12)【解析】不妨设a<b<c,作出f(x)的图象,如图所示:由图象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即−lga=lgb,∴lgab=0,则ab=1,∴abc=c,∴abc的取值范围是(10,12),14、【解析】由两直线平行的充要条件可得:,即:,解得:,当时,直线为:,直线为:,两直线重合,不合题意,当时,直线为:,直线为:,两直线不重合,综上可得:.15、【解析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【详解】由,,两式相加有,可得故答案为:.16、kπ,π4【解析】根据正切函数性质求解、【详解】由正切函数性质,由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案为:[kπ,kπ+π4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值为,最小值为;(2).【解析】(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将化简,再由三角函数的性质求得最值;(2)利用时,,对分类求出函数的解析式即可.【详解】(1),因为,所以,则,,所以的最大值为;的最小值为;(2)当时,,当时,,,当时,;,综上:在区间上的解析式为:.【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键.18、(1)答案见解析(2)答案见解析【解析】(1)由分别等于,计算描点作图,并由三角函数性质求解(2)根据三角函数图象变换规则作答【小问1详解】列表:0020-20描点连线(如图):振幅:2,周期,频率,相位:【小问2详解】把的图象向右平移个单位,然后图象上所有点的的横坐标扩大为原来的3倍,纵坐标不变,再把所得图象上所有点的横坐标不变,纵坐标扩大为原来的2倍,得图象的解析式为19、(1)(2)【解析】(1):先利用辅助角公式化简,然后利用偶函数的性质,和两对称轴的距离可求出,便可写出;(2):将图像平移得到,求其在定义域内的两根转为两个函数由两个交点,便可求出m的取值范围.【小问1详解】函数为偶函数令,可得图像的相邻两对称轴间的距离为【小问2详解】将函数的图像向右平移个单位长度,可得的图像,再将横坐标缩小为原来的(纵坐标不变),得到函数的图像若在上有两个不同的根,则在上有两个不同的根,即函数的图像与直线在上有两个不同的交点.,,,求得故的取值范围为.20、(1)证明见解析;(2);(3).【解析】(1)利用判断(2),化简,通过判别式小于0,求出的范围即可(3)由,推出,得到对任意都成立,然后分离变量,通过当时,当时,分别求解最小值即可【详解】(1),(2)由,故;(3)由,即对任意都成立当时,;当时,;当时,综上:【点睛】思路点睛:本题考查函数新定义,重点是理解新定义的意义,本题第三问的关键是代入定义后转化为不等式恒成立问题,利用参变分离后求的取值范围,再根据,根据函数的单调性,讨论的取值,求得的最小值.21、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)(Ⅱ)利用判定定理证明线面平行时,关键是在平面内找一条与已知直线平行的直线,解题时可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过平行线分线段成比例等.证明直线和平面垂直的常用方法:(1)利用判定定理.(2)利用判定定理的推论.(3)利用面面平行的性质.(4)利用面面垂直的性质.(Ⅲ)判定面面垂直的方法(1)面面垂直的定义,即证两平面所成的二面角为直角;(2)面面垂直的判定定理试题解析:(1)由已知得DE⊥AE,AE⊥EC.∵DE∩EC=E,DE、EC⊂平面DCE.∴AE⊥平面CDE.(2)取AB中点H,连接GH、FH,∴GH∥BD,FH∥BC,又GH∩FH=H,∴平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实习证明模板下载版(样本)
- 下步工作计划怎么写(共13篇)
- 湖北汽车工业学院科技学院《机械制造技术基础》2023-2024学年第一学期期末试卷
- 湖北汽车工业学院《知识产权案例分析》2022-2023学年第一学期期末试卷
- 招聘广告模板(多篇)
- 开课课件教学课件
- 未成年离异孩子改姓协议书范文(2篇)
- 旅游包车合同
- 服务合同范本(2篇)
- 《现场管理要素》课件
- 2023年4月自考00808商法试题及答案含解析
- 2022信息系统安全运维报告模板
- 电解质紊乱-课件
- 银行物业服务环境卫生管理方案
- 文旅剧本杀项目策划方案
- 红军之父伟大的革命家朱德
- 给小学生科普人工智能
- 哥斯达黎加资料课件
- 退休兼职规定
- 6、电力建设工程概预算定额-热力设备安装工程课件
- 香港大公报电子版
评论
0/150
提交评论