版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省潍坊市寿光市现代中学高一上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,且函数恰有三个不同的零点,则实数的取值范围是A. B.C. D.2.全集,集合,则()A. B.C. D.3.若函数(且)的图像经过定点P,则点P的坐标是()A. B.C. D.4.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°5.若函数是函数(且)的反函数,且,则()A. B.C. D.6.命题“,使得”的否定是()A., B.,C., D.,7.三个数的大小关系为()A. B.C. D.8.已知为锐角,为钝角,,则()A. B.C. D.9.若集合,则()A. B.C. D.10.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,2511.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.212.函数y=的单调增区间为A.(-,) B.(,+)C.(-1,] D.[,4)二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.集合,,则__________.14.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.15.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______16.化简求值(1)化简(2)已知:,求值三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,在直三棱柱ABC-A1B1C1中,三角形ABC为等腰直角三角形,AC=BC=2(1)求证:AC1//(2)二面角B118.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值19.已知函数,(1)求函数的最大值及取得最大值时的值;(2)若方程在上的解为,,求的值20.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥BC,,D为线段AC的中点,E为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)求二面角P-BC-A的平面角的大小.21.设函数的定义域为集合,函数的定义域为集合.(1)若,求实数的取值范围;(2)若,求实数的取值范围.22.有一圆与直线相切于点,且经过点,求此圆的方程
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】函数恰有三个不同的零点等价于与有三个交点,再分别画出和的图像,通过观察图像得出a的范围.【详解】解:方程所以函数恰有三个不同的零点等价于与有三个交点记,画出函数简图如下画出函数如图中过原点虚线l,平移l要保证图像有三个交点,向上最多平移到l’位置,向下平移一直会有三个交点,所以,即故选A.【点睛】本题考查了函数的零点问题,解决函数零点问题常转化为两函数交点问题2、B【解析】先求出集合A,再根据补集定义求得答案.【详解】由题意,,则.故选:B.3、B【解析】由函数图像的平移变换或根据可得.【详解】因为,所以当,即时,函数值为定值0,所以点P坐标为.另解:因为可以由向右平移一个单位长度后,再向下平移1个单位长度得到,由过定点,所以过定点.故选:B4、C【解析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C5、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.6、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B7、A【解析】利用指数对数函数的性质可以判定,从而做出判定.【详解】因为指数函数是单调增函数,是单调减函数,对数函数是单调减函数,所以,所以,故选:A8、C【解析】利用平方关系和两角和的余弦展开式计算可得答案.【详解】因为为锐角,为钝角,,所以,,则.故选:C.9、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。10、A【解析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A11、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D12、C【解析】令,,()在为增函数,在上是增函数,在上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数y=的单调增区间为选C.【点睛】有关复合函数的单调性要求根据“同增异减”的法则去判断,但在研究函数的单调性时,务必要注意函数的定义域,特别是含参数的函数单调性问题,注意对参数进行讨论,指、对数问题针对底数a讨论两种情况,分0<a<1和a>1两种情况,既要保证函数的单调性,又要保证真数大于零.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【详解】因为,,所以.故答案为:【点睛】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.14、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.15、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.16、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见解析(2)45°【解析】1设BC1∩B1C=E,连接ED,则2推导出CD⊥AB,BB1⊥CD,从而CD⊥平面ABB1A1,进而CD⊥B1解析:(1)在直三棱柱ABC-A1B则E为BC1的中点,连接∵D为AB的中点,∴ED//AC,又∵ED⊂平面CDB1,AC∴AC1//(2)∵ΔABC中,AC=BC,D为AB中点,∴CD⊥AB,又∵BB1⊥平面ABC,CD⊂∴BB1⊥CD,又AB∩BB1∵B1D⊂平面ABB1A1,AB⊂平面∴∠B1DB∵ΔABC中,AB=2,∴BD=1,RtΔB1BD中,∴二面角B1-CD-B18、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.19、(1)当时,函数取得最大值为;(2).【解析】(1)利用同角三角函数的平方关系化简,再利用换元法即可求最值以及取得最值时的值;(2)求出函数的对称轴,得到和的关系,利用诱导公式化简可得答案.【详解】(1),令,可得,对称轴为,开口向下,所以在上单调递增,所以当,即,时,,所以当时,函数取得最大值为;(2)令,可得,当时,是的对称轴,因为方程在上的解为,,,,且,所以,所以,所以,所以的值为.20、(1)见解析(2)【解析】(1)由线面垂直的判定定理可得平面,从而可得,证明,再根据线面垂直的判定定理可得平面PAC,再根据面面垂直的判定定理即可得证;(2)由线面垂直的性质可得,再根据线面垂直的判定定理可得平面,则有,从而可得即为二面角P-BC-A的平面角,从而可得出答案.【小问1详解】证明:因为PA⊥AB,PA⊥AC,,所以平面,又因平面,所以,因为D为线段AC的中点,,所以,又,所以平面PAC,又因为平面BDE,所以平面BDE⊥平面PAC;【小问2详解】解:由(1)得平面,又平面,所以,因为AB⊥BC,,所以平面,因为平面,所以,所以即为二面角P-BC-A平面角,中,,所以,所以,即二面角P-BC-A的平面角的大小为.21、(1)(2)【解析】(1)首先分别求解两个函数的定义域,根据集合包含关系,列不等式求解的取值范围;(2)根据,得,求的取值范围.【小问1详解】解:由题知,,解得:,若,则,即,实数的取值范围是.【小问2详解】解:若,则,即,实数的取值范围是.22、x2+y2-10x-9y+39=0【解析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【详解】法一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业贷款交易合同范例
- 劳务派遣安全合同模板
- 婚纱拍摄签单合同范例
- 农村田地买合同模板
- 南汇危化品仓储合同模板
- 委托加工协议合同范例
- 上海建筑门窗合同范例
- 出租商铺库房合同范例
- 备案房租合同范例
- 南宁网约车租赁合同范例
- 规培体表肿物切除术
- 履带吊使用安全技术规程
- 犟龟-完整版获奖课件
- 工业产品CAD技能三级试题及其评分标准
- 汉语词性专题练习(附答案)
- 劳动合同-高管补充协议20110520
- 浙江省温州市地图矢量PPT模板(图文)
- 上海市建设工程项目管理机构管理人员情况表
- 北师大版二年级数学上册第九单元《除法》知识点梳理复习ppt
- 空气能室外机保养维护记录表
- DB37∕T 5162-2020 装配式混凝土结构钢筋套筒灌浆连接应用技术规程
评论
0/150
提交评论