版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省平原县第一中学高一数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知集合A={0,1},B={-1,0},则A∩B=()A.0, B.C. D.2.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.693.已知,且,则的值为()A. B.C. D.4.已知扇形的圆心角为,面积为,则扇形的弧长等于(
)A. B.C. D.5.若定义运算,则函数的值域是()A.(-∞,+∞) B.[1,+∞)C.(0.+∞) D.(0,1]6.已知,,,则A. B.C. D.7.终边在x轴上的角的集合为()A. B.C. D.8.下列关系中,正确的是()A. B.C D.9.已知,则的大小关系是A. B.C. D.10.设是定义在上的奇函数,且当时,,则()A. B.C. D.11.设函数与的图象的交点为,则所在的区间为()A B.C. D.12.函数f(x)=x2-3x-4的零点是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数若,则实数___________.14.计算:()0+_____15.已知扇形OAB的面积为,半径为3,则圆心角为_____16.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.18.设A是实数集的非空子集,称集合且为集合A的生成集(1)当时,写出集合A的生成集B;(2)若A是由5个正实数构成的集合,求其生成集B中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A,使其生成集,并说明理由19.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?20.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a取值范围.21.已知是定义在上的奇函数,,当时的解析式为.(1)写出在上的解析式;(2)求在上的最值.22.英国数学家泰勒发现了如下公式:,其中,此公式有广泛的用途,例如利用公式得到一些不等式:当时,,.(1)证明:当时,;(2)设,若区间满足当定义域为时,值域也为,则称为的“和谐区间”.(i)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由;(ii)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】利用交集定义直接求解【详解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故选B【点睛】本题考查交集的求法,考查交集定义,是基础题2、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B3、B【解析】先通过诱导公式把转化成,再结合平方关系求解.【详解】,又,.故选:B.4、C【解析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【详解】由题意可得,所以【点睛】本题考查扇形的面积公式、弧长公式,属于基础题5、D【解析】作出函数的图像,结合图像即可得出结论.【详解】由题意分析得:取函数与中的较小的值,则,如图所示(实线部分):由图可知:函数的值域为:.故选:D.【点睛】本题主要考查了指数函数的性质和应用.考查了数形结合思想.属于较易题.6、A【解析】故选7、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.8、B【解析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B9、B【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.10、D【解析】根据奇函数的性质求函数值即可.【详解】故选:D11、C【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).12、D【解析】直接利用函数零点定义,解即可.【详解】由,解得或,函数零点是.故选:.【点睛】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、2【解析】先计算,再计算即得解.【详解】解:,所以.故答案为:214、【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式.故答案为:【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.15、【解析】直接利用扇形的面积公式得到答案.【详解】故答案为:【点睛】本题考查了扇形面积的计算,属于简单题.16、奇函数【解析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【详解】,令,得,,再令,得,是上的奇函数;【点睛】本题考查了赋值法及奇函数的定义三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)(3)【解析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2详解】函数,,若对一切恒成立,则对一切恒成立,由在递增,可得,所以,即的取值范围是,;【小问3详解】关于的方程且,故函数在区间上有且仅有一个零点,等价于在区间上有唯一解,作出函数且的图象,如图示:当时,方程的解有且只有1个,故实数p的取值范围是.18、(1)(2)7(3)不存在,理由见解析【解析】(1)利用集合的生成集定义直接求解.(2)设,且,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】,【小问2详解】设,不妨设,因为,所以中元素个数大于等于7个,又,,此时中元素个数大于等于7个,所以生成集B中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合,使其生成集,不妨设,则集合A的生成集则必有,其4个正实数的乘积;也有,其4个正实数乘积,矛盾;所以假设不成立,故不存在4个正实数构成的集合A,使其生成集【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A的生成集的定义,考查学生的分析解题能力,属于较难题.19、(1)(2)4万件【解析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;小问2详解】解:当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13(万元).所以当工厂生产4万件产品时,可使盈利最多为13万元.20、(1)..(2)【解析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论【详解】(1)因为,所以.函数的大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题21、(1)(2)最大值为0,最小值为【解析】(1)先求得参数,再依据奇函数性质即可求得在上的解析式;(2)转化为二次函数在给定区间求值域即可解决.【小问1详解】因为是定义在上的奇函数,所以,即,由,得,由,解得,则当时,函数解析式为设,则,,即当时,【小问2详解】当时,,所以当,即时,的最大值为0,当,即时,的最小值为.22、(1)证明见解析(2)(i)不存在“和谐区间”,理由见解析(ii)存在,有唯一的“和谐区间”【解析】(1)利用来证得结论成立.(2)(i)通过证明方程只有一个实根来判断出此时不存在“和谐区间”.(ii)对的取值进行分类讨论,结合的单调性以及(1)的结论求得唯一的“和谐区间”.【小问1详解】由已知当时,,得,所以当时,.【小问2详解】(i)时,假设存在,则由知,注意到,故,所以在单调递增,于是,即是方程的两个不等实根,易知不是方程的根,由已知,当时,,令,则有时,,即,故方程只有一个实根0,故不存在“和谐区间”.(ii)时,假设存在,则由知若,则由,知,与值域是矛盾,故不存在“和谐区间”,同理,时,也不存在,下面讨论,若,则,故最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《锂离子电池设计与制造》教学大纲
- 3下数学4单元教育课件
- 玉溪师范学院《土地利用规划》2022-2023学年第一学期期末试卷
- 英语经典语录(带汉语翻译)
- 会考复习一(公开课教案)
- ECharts数据可视化 教案-教学设计 第2、3章 折线图和饼图、柱状图和散点图
- 计算机网络设备账务处理实例-记账实操
- 化学第一课课件
- 2019湘美版 高中美术 选择性必修3 雕塑《第二单元 雕塑的创作与实践》大单元整体教学设计2020课标
- 草原承包协议书
- GB/T 31315-2014机械结构用冷拔或冷轧精密焊接钢管
- GB/T 30790.4-2014色漆和清漆防护涂料体系对钢结构的防腐蚀保护第4部分:表面类型和表面处理
- GB/T 26572-2011电子电气产品中限用物质的限量要求
- 公安警察局工作总结汇报ppt模板
- GB/T 15048-1994硬质泡沫塑料压缩蠕变试验方法
- 从前慢混声合唱钢琴谱
- 小学书法认识隶书课件
- 江苏省南京市上元中学2023年中考英语模拟预测试卷(含答案解析)
- 《组织行为学》美斯蒂芬·P·罗宾斯著版课件
- XX项目不动产权籍调查技术设计书
- 烟草行业安全风险分级管控和事故隐患排查治理双重预防机制课件
评论
0/150
提交评论