双正方形的旋转【图形变换公开课】_第1页
双正方形的旋转【图形变换公开课】_第2页
双正方形的旋转【图形变换公开课】_第3页
双正方形的旋转【图形变换公开课】_第4页
双正方形的旋转【图形变换公开课】_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5页共8页图形的变换一、学情分析初三学生在初二阶段就已经学过旋转这一节内容,大多数学生对旋转的相关特征应该还是比较熟悉的,同时在旋转中出现的一些相关的核心知识点(如正方形的性质)已经在前阶段的复习中涉及到,大多数学生已经初步具备一定的解决问题的综合能力.鉴于此课例习题既有基础性还有一定的综合性,故对于学生数学基础相对较好的班级可以安排在中考第一轮“基础+综合”复习阶段,而对于学生数学基础一般的班级则可以安排在中考第二轮“综合+基础”专题复习阶段.放在第一轮基础复习,只需解决两个例题即可;放在第二轮专题复习,可分成两个课时进行为好,以满足各个层次学生的不同需求.二、教学任务和目标通过本课的学习,学生能够进一步体悟解决双正方形旋转问题的核心知识点是旋转的特征(性质),即旋转角等于对应边的夹角;旋转前后的图形是全等形(对应边相等,对应角相等).学生能够进一步理解并能熟练运用旋转的特征解决双正方形旋转的实际问题.同时,还要让学生通过双正方形的旋转领悟旋转过程中的变与不变,变就有可能存在函数关系,不变就可能存在相等关系(或定值),这就是旋转问题展现给学生的数学本质的魅力,也是数学所特有的哲学价值.数学学科的本位,数学学习的本质,数学思维的本色,在本节课的复习中可以得到充分的体现.三、学法点拨解决旋转问题的基本策略是“化静为动,以静制动”.所谓“化静为动”,即要搞清楚整个旋转过程中哪些元素(如边、角)发生了变化,哪些元素仍然没变,有时还要通过特殊位置图形的特征来判断不变的元素.所谓“以静制动”,即要把旋转过程中的各种图形的位置情况作为静止的图形进行研究,接下来的计算与证明和原先没啥两样,只不过赋予了旋转的背景而已.如果学生能够破译旋转背后的“密码”,那么以旋转为背景的几何问题就迎刃而解了.四、教学过程设计(一)预学尝试如果条件许可,可以提前一天把3个例题的题设(教师预设的几个问题在预学稿上是隐去的)和图形发给学生预学,让学生根据已有的经验回家自主提出问题,在学案稿上写好.一方面把学习的主动权还给学生,激发学生学习的内在活力,方便在课上师生共同交流预学尝试提出的问题;另一方面让教师能够及时了解学情,便于及时调整预设,以取得更好的学习效果.(二)互动反馈例题1(中考试题改编):把正方形ABCD绕着点A按顺时针方向旋转α(0°≤α≤90°)得到正方形AEFG,边FG与BC交于点H.(1)试问图中有哪些相等的线段吗?请先观察猜想,然后再证明你的猜想;(2)连结DG、BE,猜想DG与BE的关系,并证明;(3)连结BG、CF,猜想BG与CF的关系,并证明;(4)若AD=3,∠DAG=30°,则你能求出阴影部分的面积吗?功能分析:本题的设计是一个正方形绕着另一个正方形的对角线的端点旋转,是涉及旋转相关知识的一个基础问题,学生曾经或多或少经历过类似的问题,情景比较熟悉,前3题都是比较基础的问题,学生比较容易上手,也有利于学生快速进入旋转情景中.(1)、(2)主要引导学生观察、猜想旋转过程中形成的哪些线段相等,哪些角相等(双正方形自身的边、角相等则是显而易见的,也是非常重要的条件),并能寻求证明的方法与途径(全等,等腰三角形知识);(3)建立在(1)的基础上主要考查学生旋转过程中形成的线段存在平行关系,并能力求通过等腰三角形的性质或相似的判定来证明;(4)是一个比较综合的问题,建立在(1)的基础上,考查学生转化为解直角三角形及其面积的问题.学法预设:笔者在这里设计了4个问题,既有学生熟悉的问题,也有变式逐步提高的问题,对绝大多数学生来说应该都能解决.4个问题涉及旋转、全等、相似、等腰三角形、平行、解直角三角形、正方形等各种基础知识点,通过旋转把这些知识点串了起来.通过“化静为动”的策略找到∠DAG=∠BAE,∠ADC=∠AGH=∠ABC=∠AEF,AD=AG=AB=AE,GF=BC;通过“以静制动”发现等腰△HGB、△CHF,△AGH≌△ABH等等.第1问,学生很容易猜想GH=BH,CH=HF.如何证明?对于证明GH=BH,估计学生会有两种思路.一是连结BG,利用等腰三角形的性质和判定来证明;二是连结AH,利用△AGH≌△ABH来证明.第2问,学生根据旋转的特征,利用△ADG≌△AEB很容易证明DG=BE,甚至于证明DG⊥BE.此问宜让学生自主解决.第3问,学生可能也会有两种思路.一是利用第1问的结论可知△CHF与△GHB都是等腰三角形,再利用等腰三角形顶角相等从而底角相等,从而易证BG∥CF;二是利用△CHF∽△GHB来证明平行,这一点学生可能不一定想到,因为方法一简便易行.第4问,则是建立在第1问得基础上,先是要引导学生把阴影部分的面积转化为求四边形GABH的面积,再转化为△ABH的面积(或者先求直角梯形DAHC,再求直角三角形AGH的面积即可),下面的问题就单纯是解直角三角形了.关键的问题是两次转化思想的自觉运用,这对于学困生还是有困难的,对中等及以上学生不是难事.答案精要:(1)GH=BH,CH=HF(双正方形自身的边、角相等除外);连接BG,由正方形的性质可知:AG=AB、∠AGH=∠ABH=90°,∴∠AGB=∠ABG,∴∠AGH-∠AGB=∠ABH-∠ABG即∠HGB=∠HBG,∴GH=BH,又∵GF=BC,∴CH=HF.(2)方法同(1),若EQ\f(DG,BG)=EQ\f(a,b),则EQ\f(GM,GN)=EQ\f(1,3);(3)易求得DO=OG=1,GP=PB=3,由BN=x得PN=3-x,故OM=EQ\f(1,3)(3-x),于是AM=3-EQ\f(1,3)(3-x)=2+EQ\f(1,3)x.∴y=EQ\f(1,2)(2+EQ\f(1,3)x+3)+EQ\f(1,2)×3×(3-x)=7-EQ\f(4,3)x;(三)总结提炼通过3个双正方形旋转的例习题的教学,要及时引导学生进行数学思想方法的总结和方法论的提炼,让学生进一步感受在旋转过程中的变与不变.深刻领会旋转的特征,即旋转角度等于对应边的夹角,旋转前后的图形是全等形.同时体悟隐藏在旋转背景背后的全等、相似、解直角三角形、函数、面积、特别是正方形的性质等数学核心的知识点以及特殊到一般思想、化归思想、方程思想等数学思想方法.(四)延伸拓展1、基础训练:(中考试题改编)正方形ABCD与OEFG都是边长为12的正方形,其中点O为正方形ABCD的对角线AC的中点.正方形OEFG绕点O顺时针旋转α(0°<α<45°)(I)猜想:图中有哪些相等的线段(正方形的边长相等除外)?写出两个并证明;(II)若NJ=5,求BN的长;(III)若CM=x,四边形OMJN的面积为y,求y与x的函数关系式.答案精要:(I)CM=BN;OM=ON;MJ=NJ;MG=NE,证明略;(II)易证△MOJ≌△NOJ,设CM=BJ=x,由NJ=MJ=5可得BJ=7-x,在Rt△NBJ中利用勾股定理可得x2+(7-x)2=52,解得x=3或4.故BN等于3或4;(III)由(II)易知,y=36-EQ\f(1,2)x(7-x),即y=EQ\f(1,2)x2-EQ\f(7,2)x+36.2、拓展训练:(2007无锡滨湖区中考模拟题)将两张互相重合的正方形纸片ABCD和EFGH的中心O用图钉固定住,保持正方形ABCD不动,逆时针旋转正方形EFGH.(I)试给出旋转角度小于90°时的一些猜想:①ME=MA;②两张正方形纸片的重叠部分的面积为定值;③∠MON保持45°不变.请你对这三个猜想作出判断(正确的在序号后的括号内打上“√”,错误的打上“×”):①();②();③().(II)可以发现:(I)中的△EMN的面积S随着旋转角度∠DOE的变化而变化.请你指出在怎样的位置时△EMN的面积S取得最大值.(不必证明)(III)上面的三个猜想中若有正确的,请选择其中的一个给予证明;若都是错误的,请选择其一说明理由.答案精要:(I)①(√);②(×);③(√);(II)当∠AOE=45°时,△EMN的面积S取得最大值;(III)对于猜想①,连接OA、OE、AE、OD、ED.由已知得OA=OE,∴∠OAE=∠OEA.又∵∠OAM=∠OEM=45°,∴∠OAE-∠OAM=∠OEA-∠OEM,即∠MAE=∠MEA.∴ME=MA.对于猜想③,证得OM平分∠EOA,同理ON平分∠DOE,∴∠MOE+∠NOE=EQ\f(1,2)∠AOD=EQ\f(1,2)×90°=45°,即∠MON保持45°不变.五、设计思路和意图中考第一轮复习不是知识点的简单重复,第一轮复习虽要以基础为主,但也要兼顾综合,体现“基础+综合”的复习思路,这样才能满足各个层次学生的学习需求.本节课选自图形变换一章的复习,针对不同学习层次的学生展开教学过程的设计,体现“起点低(注重基础,下要保底),步子紧(小步子式逐步提高要求),落点高(上不封顶)”的设计要求,利用几何画板的动画功能演绎旋转过程中的变与不变.这其中围绕某一核心知识背景(本节课是旋转)来设计“套题(题组)”式训练是一条行之有效的途径.1、要精心设计有效的复习课教学环节.通过“预学尝试—互动反馈—总结提炼—延伸拓展”等四个环节来解决相关问题.引导学生预学提问(猜想),师生合作梳理问题,学生先独立尝试,再互动解决问题.在此基础上教师再提出预设中的问题,有些虽然和学生提出的问题重复,但更能激发提出问题的学生的成就感.而对于学生没有猜想到的新问题可以让学生再次独立及合作互动解决,反馈在尝试和互动中生成.教师在教学时,要对所遇到的数学知识进行拓展,一题多问,一题多变,一图多变,一图多用,多图归一,多解归一,使同一个教学内容发挥其最大的教学功能.在这样的有效训练中才能真正提升学生解决问题的智慧.2、要让散落的“珍珠”串成美丽的“项链”.例题即训练题,改编例题和习题的界限,总共5个例习题已经足够学生课内外的训练和思考了.每个例习题的设计都是安排两个完全相同的正方形旋转,这样做的目的一方面因其旋转要素已经涵盖了图形旋转的类型和特征,另一方面是因为正方形是四边形中最特殊的四边形,它集中了矩形菱形的所有性质,而两个完全相同的正方形通过旋转会产生性质叠加,不仅结论会更加丰富多彩,而且解决问题的方法也是多样化的,从而使得旋转变换更具魅力.每一个例习题都以问题串的形式出现,每一个例习题都以双正方形的旋转为背景,每一个例习题都可以看作是一粒“珍珠”.题组中的每个例习题,前一个都是后一题的基础与铺垫,后一题都是前一题的提升和拓展,我中有你,你中有我,这就是“套题(题组)”式训练方式.总共5题的旋转都是围绕正方形的对角线上的点展开(端点、中点、任意点),由浅入深,层层推开,串成“珍珠”的线就是旋转.要突出旋转过程中的变化,更体现不变的数学本质,强化数学思想方法的渗透.复习课如果坚持这样做了,学生才能真正“聪明”起来,才能真正达到“以少胜多”的最大功效,才能让散落的“珍珠”(零散的知识点)串成美丽的“项链”(内化的知识结构和学生内生的智慧).可见,组织的教学内容要突出其与其他的数学知识和方法间的联系.一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论