2024届吉林省五地六市联盟高一数学第一学期期末含解析_第1页
2024届吉林省五地六市联盟高一数学第一学期期末含解析_第2页
2024届吉林省五地六市联盟高一数学第一学期期末含解析_第3页
2024届吉林省五地六市联盟高一数学第一学期期末含解析_第4页
2024届吉林省五地六市联盟高一数学第一学期期末含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省五地六市联盟高一数学第一学期期末考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.某数学兴趣小组设计了一种螺线,作法如下:在水平直线上取长度为1的线段AB,并作等边三角形ABC,然后以点B为圆心,BA为半径逆时针画圆弧,交线段CB的延长线于点D;再以点C为圆心,CD为半径逆时针画圆弧,交线段AC的延长线于点E,以此类推,得到的螺线如图所示.当螺线与直线有6个交点(不含A点)时,则螺线长度最小值为()A. B.C. D.2.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则3.下列各角中,与终边相同的角为()A. B.160°C. D.360°4.把表示成,的形式,则的值可以是()A. B.C. D.5.已知直线,平面满足,则直线与直线的位置关系是A.平行 B.相交或异面C.异面 D.平行或异面6.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.7.函数(,)在一个周期内的图象如图所示,为了得到正弦曲线,只需把图象上所有的点()A.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变B.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变D.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变8.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.9.已知函数,则()A. B.C. D.110.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知函数,则使成立的x的取值范围是()A. B.C. D.12.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线二、填空题(本大题共4小题,共20分)13.一个几何体的三视图如图所示,则该几何体的体积为__________.14.已知角的终边经过点,则的值等于_____15.已知函数,若存在,使得,则的取值范围为_____________.16.若函数在上存在零点,则实数的取值范围是________三、解答题(本大题共6小题,共70分)17.已知,,,且.(1)求的值;(2)求的值.18.已知函数(1)求函数导数;(2)求函数的单调区间和极值点.19.已知函数.(1)当时,求函数的值域;(2)若函数的值域为R,求实数取值范围.20.,,且,,且为偶函数(1)求;(2)求满足,的的集合21.已知函数(1)求函数的最小正周期和单调递增区间;(2)若在区间上存在唯一的最小值为-2,求实数m的取值范围22.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据题意,找到螺线画法的规律,由此对选项逐一分析,从而得到答案【详解】第1次画线:以点为圆心,,旋转,划过的圆弧长为;第2次画线:以点为圆心,,旋转,划过的圆弧长为,交累计1次;第3次画线:以点为圆心,,旋转,划过的圆弧长为3,交累计2次;第4次画线:以点为圆心,,旋转,划过的圆弧长为;第5次画线:以点为圆心,,旋转,划过的圆弧长为,交累计3次;前5次累计画线;第6次画线:以点为圆心,,旋转,划过的圆弧长为,交累计4次,累计画线;第7次画线:以点为圆心,,旋转,划过的圆弧长为;第8次画线:以点为圆心,,旋转,划过的圆弧长为,交累计5次;第9次画线:以点为圆心,,旋转,划过的圆弧长为,交累计6次,累计画线,故选项A正确故选:A另解:由前三次规律可发现,每画三次,与l产生两个交点,故要产生6个交点,需要画9次;每一次画的圆弧长度是以为首项,为公差的等差数列,所以前9项之和为:﹒故选:A﹒2、C【解析】结合特殊值、差比较法确定正确选项.【详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C3、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C4、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B5、D【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点,∴a、b平行或异面.故选D6、B【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小7、B【解析】先利用图像求出函数的解析式,在对四个选项,利用图像变换一一验证即可.【详解】由图像可知:,所以,所以,解得:.所以.又图像经过,所以,解得:,所以对于A:把图象上所有的点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变得到.故A错误;对于B:把图象上所有点向右平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变.故B正确;对于C:把图象上所有点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变.故C错误;对于D:把图象上所有的点向右平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变得到.故D错误;故选:B8、D【解析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【点睛】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题9、D【解析】由分段函数定义计算【详解】,所以故选:D10、C【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.11、C【解析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.12、C【解析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C二、填空题(本大题共4小题,共20分)13、【解析】该几何体是一个半圆柱,如图,其体积为.考点:几何体的体积.14、【解析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.15、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.16、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:三、解答题(本大题共6小题,共70分)17、(1).(2)【解析】(1)由已知根据同角三角函数的基本关系可求得,根据代入即可求得求得结果.(2)由(1)利用二倍角公式,可求得,进而可得的值,根据角的范围,即可确定结果.【详解】(1)∵,且∴∴又∵∴(2)∴∴或∵∴又∵∴∵,且∴又∵∴∴【点睛】本题考查同角三角函数的基本关系,二倍角公式,两角和与差的三角函数,考查已知三角函数值求角,属于基础题.18、(1);(2)函数的单调递增区间为和,单调递减区间为.函数的极大值点为,极小值点为.【解析】(1)直接利用导数求导得解;(2)令,求出方程的根,再列表得解.【小问1详解】解:由题得.【小问2详解】解:,令或.当变化时,的变化情况如下表,正0负0正单调递增极大值点单调递减极小值点单调递增所以函数的单调递增区间为和,单调递减区间为.函数的极大值点为,极小值点为.19、(1);(2).【解析】(1)当时,,利用二次函数的性质求出真数部分的范围,根据对数函数的单调性可求出值域;(2)的值域为等价于的值域包含,故,即求.小问1详解】当时,,∵,∴,∴函数的值域;【小问2详解】要使函数的值域为R,则的值域包含,∴,解得或,∴实数取值范围为.20、(1);(2)【解析】(1)首先利用向量数量积的坐标运算并且结合二倍角公式与两角和的正弦公式化简函数的解析式,可得:.由已知为偶函数知其图象关于y轴对称,可得:当x=0成立,从而可得,再根据θ的范围即可得到答案(2)由(1)可得:,再结合余弦函数的图象及性质可得:,进而结合x的取值范围得到结果试题解析:(1)由题意可得:所以函数解析式为:;因为为偶函数,所以有:即:又因为,所以(2)由(1)可得:,因为,所以由余弦函数的图象及性质得:,又因为,所以x的集合为考点:1.两角和与差的正余弦公式、二倍角公式;2.向量数量积的坐标运算;3.三角函数的性质21、(1),(2)【解析】(1)用诱导公式将函数化为,然后可解;(2)根据m介于第一个最小值点和第二个最小值点之间可解.【小问1详解】所以的最小正周期

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论