2024届广东省广州荔湾区真光中学高一上数学期末综合测试试题含解析_第1页
2024届广东省广州荔湾区真光中学高一上数学期末综合测试试题含解析_第2页
2024届广东省广州荔湾区真光中学高一上数学期末综合测试试题含解析_第3页
2024届广东省广州荔湾区真光中学高一上数学期末综合测试试题含解析_第4页
2024届广东省广州荔湾区真光中学高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省广州荔湾区真光中学高一上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.3.某圆的一条弦长等于半径,则这条弦所对的圆心角为A. B.C. D.14.下列命题中是真命题的个数为()①函数的对称轴方程是;②函数的一个对称轴方程是;③函数的图象关于点对称;④函数的值域为A1 B.2C.3 D.45.已知函数是R上的单调函数,则实数a的取值范围是()A. B.C. D.6.已知,则函数与函数的图象可能是()A. B.C. D.7.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.8.已知集合,则()A. B.C. D.9.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.10.已知向量,满足,,且与夹角为,则()A. B.C. D.11.下列函数中,周期为的是()A. B.C. D.12.(程序如下图)程序的输出结果为A.3,4 B.7,7C.7,8 D.7,11二、填空题(本大题共4小题,共20分)13.已知函数在上的最大值为2,则_________14.已知角的终边过点,求_________________.15.函数的值域是________16.已知集合,若,求实数的值.三、解答题(本大题共6小题,共70分)17.已知函数.(Ⅰ)对任意的实数,恒有成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当实数取最小值时,讨论函数在时的零点个数.18.已知线段AB的端点A的坐标为,端点B是圆:上的动点.(1)求过A点且与圆相交时的弦长为的直线的方程(2)求线段AB中点M的轨迹方程,并说明它是什么图形19.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.20.已知,___________,.从①,②,③中任选一个条件,补充在上面问题中,并完成题目.(1)求值(2)求.21.已知函数(常数).(1)当时,用定义证明在区间上是严格增函数;(2)根据的不同取值,判断函数的奇偶性,并说明理由;(3)令,设在区间上的最小值为,求的表达式.22.已知函数为奇函数(1)求实数的值,判断函数的单调性并用定义证明;(2)求关于的不等式的解集

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】分别求出两个不等式的的取值范围,根据的取值范围判断充分必要性.【详解】等价于,解得:;等价于,解得:,可以推出,而不能推出,所以是的必要不充分条件,所以“”是“”的必要不充分条件故选:B2、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C3、C【解析】直接利用已知条件,转化求解弦所对的圆心角即可.【详解】圆的一条弦长等于半径,故由此弦和两条半径构成的三角形是等边三角形,所以弦所对的圆心角为.故选C.【点睛】本题考查扇形圆心角的求法,是基本知识的考查.4、B【解析】根据二次函数的性质、三角函数的性质以及图象,对每个选项进行逐一分析,即可判断和选择.【详解】对①:函数的对称轴方程是,故①是假命题;对②:函数的对称轴方程是:,当时,其一条对称轴是,故②正确;对函数,其函数图象如下所示:对③:数形结合可知,该函数的图象不关于对称,故③是假命题;对④:数形结合可知,该函数值域为,故④为真命题.综上所述,是真命题的有2个.故选:.5、B【解析】可知分段函数在R上单调递增,只需要每段函数单调递增且在临界点处的函数值左边小于等于右边,列出不等式即可【详解】可知函数在R上单调递增,所以;对称轴,即;临界点处,即;综上所述:故选:B6、D【解析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【点睛】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.7、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C8、D【解析】由交集的定义求解即可【详解】,由题意,作数轴如图:故,故选:D.9、D【解析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【点睛】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题10、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D11、C【解析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C12、D【解析】∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.故选D.二、填空题(本大题共4小题,共20分)13、1【解析】先求导可知原函数在上单调递增,求出参数后即可求出.【详解】解:在上在上单调递增,且当取得最大值,可知故答案为:114、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.15、##【解析】求出的范围,再根据对数函数的性质即可求该函数值域.【详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.16、【解析】根据题意,可得或,然后根据结果进行验证即可.【详解】由题可知:集合,所以或,则或当时,,不符合集合元素的互异性,当时,,符合题意所以【点睛】本题考查元素与集合的关系求参数,考查计算能力,属基础题.三、解答题(本大题共6小题,共70分)17、(Ⅰ);(Ⅱ)见解析.【解析】(Ⅰ)由可知,区间是不等式解集的子集,由此可得出实数的不等式,解出即可;(Ⅱ)由题意可知,,则,令,可得出,令,对实数的取值范围进行分类讨论,先讨论方程的根的个数及根的范围,进而得出方程的根个数,由此可得出结论.【详解】(Ⅰ),,对任意的实数,恒有成立,则区间是不等式解集的子集,,解得,因此,实数的取值范围是;(Ⅱ),由题意可知,,,令,得,令,则,作出函数和函数在时的图象如下图所示:作出函数在时的图象如下图所示:①当或时,即当或时,方程无实根,此时,函数无零点;②当时,即当时,方程根为,而方程在区间上有两个实根,此时,函数有两个零点;③当时,即当时,方程有两根、,且,,方程在区间上有两个实根,方程在区间上有两个实根,此时,函数有四个零点;④当时,即当时,方程有两根分别为、,方程在区间上只有一个实根,方程在区间上有两个实根,此时,函数有三个零点;⑤当时,即当时,方程只有一个实根,且,方程在区间上有两个实根,此时,函数有两个零点;⑥当时,即当时,方程只有一个实根,方程在区间上只有一个实根,此时,函数只有一个零点.综上所述,当或时,函数无零点;当时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点;当时,函数有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.18、(1)或;(2)点M的轨迹是以(4,2)为圆心,半径为1的圆.【解析】⑴设直线的斜率为,求得直线的方程,再根据与圆相交的弦长为,求得圆心到直线的距离,求出即可得到直线的方程;⑵设出的坐标,确定动点之间坐标的关系,利用在圆上,可得结论;解析:(1)根据题意设直线的斜率为k,则直线的方程为,且与圆相交的弦长为,所以圆心到直线的距离为解得所以直线的方程为或(2)设∵M是线段AB的中点,又A(4,3)∴得又在圆上,则满足圆的方程∴整理得为点M的轨迹方程,点M的轨迹是以(4,2)为圆心,半径为1的圆点睛:本题考查了直线与圆的位置关系,并求出点的轨迹方程,在计算轨迹问题时的方法:用未知点坐标表示已知点坐标,然后代入原解析式即可求出关于动点的轨迹方程19、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上单调递增∴,∴,故m的最大值为3.20、(1)(2)【解析】【小问1详解】,,,若选①,则,则,若选②,则,则,则,若选③,则,,,则综上,【小问2详解】,,,,,,21、(1)证明见解析(2)当时,奇函数;当时,非奇非偶函数,理由见解析.(3)【解析】(1)当时,得到函数,利用函数单调性的定义,即可作出证明;(2)分和两种情况,结合函数的奇偶性的定义,即可得出结论.(3)根据正负性,结合具体类型的函数的单调性,进行分类讨论可以求出的表达式;【小问1详解】当时,函数,设且,则,因为,可得又由,可得,所以所以,即,所以函数是上是严格增函数.【小问2详解】由函数的定义域为关于原点对称,当时,函数,可得,此时函数为奇函数;当时,,此时且,所以时,函数为非奇非偶函数.【小问3详解】,当时,,函数在区间的最小值为;当时,函数的对称轴为:.若,在区间的最小值为;若,在区间的最小值为;若,在区间的最小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论