2024届贵州省遵义市高一数学第一学期期末含解析_第1页
2024届贵州省遵义市高一数学第一学期期末含解析_第2页
2024届贵州省遵义市高一数学第一学期期末含解析_第3页
2024届贵州省遵义市高一数学第一学期期末含解析_第4页
2024届贵州省遵义市高一数学第一学期期末含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省遵义市高一数学第一学期期末请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知,则的值为()A. B.C.1 D.23.设两条直线方程分别为,,已知,是方程的两个实根,且,则这两条直线之间的距离的最大值和最小值分别是A. B.C. D.4.已知集合,,则等于()A. B.C. D.5.在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A. B.C. D.6.已知函数是上的增函数,则实数的取值范围为()A. B.C. D.7.下列函数中,既是奇函数又在上有零点的是A. B.C D.8.已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.9.已知集合,,则()A B.C. D.{1,2,3}10.已知定义在上的偶函数,在上为减函数,且,则不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为、、,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为______12.若函数在上单调递增,则的取值范围是__________13.已知集合,则集合的子集个数为___________.14.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;对于集合,,若这两个集合构成“鲸吞”,则的取值为____________15.若,,,则的最小值为____________.16.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2球,则2球颜色相同的概率等于________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,其中(1)求的值;(2)当时,求函数单调区间;(3)求函数在区间上的值域18.已知集合A为函数的定义域,集合B是不等式的解集(1)时,求;(2)若,求实数a的取值范围19.已知.(1)求函数的定义域;(2)判断函数的奇偶性,并加以说明;(3)求的值.20.已知,且,(1)求,的值;(2),求的值21.已知二次函数的图象经过,且不等式对一切实数都成立(1)求函数的解析式;(2)若对任意,不等式恒成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.2、A【解析】先使用诱导公式,将要求的式子进行化简,然后再将带入即可完成求解.【详解】由已知使用诱导公式化简得:,将代入即.故选:A.3、B【解析】两条直线之间的距离为,选B点睛:求函数最值,一般通过条件将函数转化为一元函数,根据定义域以及函数单调性确定函数最值4、A【解析】先解不等式,再由交集的定义求解即可【详解】由题,因为,所以,即,所以,故选:A【点睛】本题考查集合的交集运算,考查利用指数函数单调性解不等式5、B【解析】由题意,代入扇形的面积公式计算即可.【详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B6、A【解析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解.【详解】函数是上增函数,所以,解得,所以实数的取值范围是故选:A.7、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.8、C【解析】设球的半径为,根据题意知球心到平面的距离,截球所得截面圆的半径为1,由,截面圆半径,球半径构成直角三角形,利用勾股定理,即可求出球半径,进而求出球的表面积.【详解】如图所示,设球的半径为,因为,所以,又因为截球所得截面的面积为,所以,在中,有,即,所以,故球的表面积,故选:C.【点睛】本题主要考查球的基本应用,答题关键点在于明确球心到截面的距离,截面圆半径,球半径三者可构成直角三角形,进而满足勾股定理.9、A【解析】利用并集概念进行计算.【详解】.故选:A10、D【解析】根据函数的性质,画出函数的图象,数形结合求出解集【详解】由题意,画出的图象如图,等价于,或,由图可知,不等式的解集为故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】计算得出,利用海伦—秦九韶公式可得出,利用基本不等式可求得的最大值.【详解】,所以,.当且仅当时,等号成立,且此时三边可以构成三角形.因此,该三角形面积的最大值为.故答案为:.12、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题13、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.14、0【解析】根据题中定义,结合子集的定义进行求解即可.【详解】当时,,显然,符合题意;当时,显然集合中元素是两个互为相反数的实数,而集合中的两个元素不互为相反数,所以集合、之间不存在子集关系,不符合题意,故答案为:15、9【解析】“1”的代换法去求的最小值即可.【详解】(当且仅当时等号成立)则的最小值为9故答案为:916、【解析】把4个球编号,用列举法写出所有基本事件,并得出2球颜色相同的事件,计数后可计算概率【详解】2个红球编号为,2个白球编号为,则依次取2球的基本事件有:共6个,其中2球颜色相同的事件有共2个,所求概率为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)函数的单调减区间为,单调增区间为(3)【解析】(1)利用求得.(2)根据三角函数单调区间的求法,求得在区间上的单调区间.(3)根据三角函数值域的求法,求得在区间上的值域.【小问1详解】由函数的最小正周期为,,所以,可得,【小问2详解】由(1)可知,当,有,,当,可得,故当时,函数单调减区间为,单调增区间为【小问3详解】当,有,,可得,有,故函数在区间上的值域为18、(1)(2)【解析】(1)由函数定义域求A,由不等式求B,按照集合交并补运算规则即可;(2)由A推出B的范围,由于a的不确定性,可以将不等式转换,用基本不等式解决.【小问1详解】由,解得:,即;当时,由得:或,∴,∴,∴;【小问2详解】由知:,即对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,即实数a的取值范围为;综上:,.19、(1)(2)偶函数(3)【解析】(1)根据定义域的要求解出定义域即可;(2)奇偶性的证明首先定义域对称,再求解,得,所以为偶函数;(3)按照对数计算公式求解试题解析:(1)由得所以函数的域为(2)因为函数的域为又所以函数为偶函数(3)20、(1);(2)【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【详解】⑴,因为,,所以;⑵因为,,,所以,【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围21、(1);(2).【解析】(1)观察不等式,令,得到成立,即,以及,再根据不等式对一切实数都成立,列式求函数的解析式;(2)法一,不等式转化为对恒成立,利用函数与不等式的关系,得到的取值范围,法二,代入后利用平方关系得到,恒成立,再根据参变分离,转化为最值问题求参数的取值范围.【详解】(1)由题意得:①,因为不等式对一切实数都成立,令,得:,所以,即②由①②解得:,且,所以,由题意得:且对恒成立,即对恒成立,对③而言,由且,得到,所以,经检验满足,故函数的解析式为(Ⅱ)法一:二次函数法,由题意,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论