2024届广东省广州荔湾区广雅中学高一上数学期末学业质量监测模拟试题含解析_第1页
2024届广东省广州荔湾区广雅中学高一上数学期末学业质量监测模拟试题含解析_第2页
2024届广东省广州荔湾区广雅中学高一上数学期末学业质量监测模拟试题含解析_第3页
2024届广东省广州荔湾区广雅中学高一上数学期末学业质量监测模拟试题含解析_第4页
2024届广东省广州荔湾区广雅中学高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省广州荔湾区广雅中学高一上数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设的两根是,则A. B.C. D.2.已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3} B.{0,1,4}C.{0,1,3} D.{1,3,4}3.已知函数是奇函数,则A. B.C. D.4.若一元二次不等式的解集为,则的值为()A. B.0C. D.25.下列四组函数中,表示同一函数的一组是()A. B.C. D.6.计算的值为A. B.C. D.7.已知函数,若关于的方程有四个不同的实数解,且,则的取值范围是()A. B.C. D.8.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a9.角终边经过点,那么()A. B.C. D.10.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.满足的集合的个数是______________12.设,则________.13.________14.已知幂函数的图象过点,则_____________15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,四棱锥P-ABCD的底面为平行四边形,M为PC中点(1)求证:BA∥平面PCD;(2)求证:AP∥平面MBD17.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.18.已知函数,.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值及相应的的值.19.某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔(单位:分钟)满足.经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人,记地铁载客量为.(1)求的表达式,并求当发车时间间隔为分钟时,地铁的载客量;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少?20.已知函数.(1)若函数在单调递增,求实数的取值范围;(2),,使在区间上值域为.求实数的取值范围.21.某纪念章从某年某月某日起开始上市,通过市场调查,得到该纪念章每枚的市场价(单位:元)与上市时间(单位:天)的数据如下:上市时间天市场价元(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③;④;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】详解】解得或或即,所以故选D2、C【解析】根据并集的定义可得集合A中一定包含的元素,再对选项进行排除,可得答案.【详解】∵集合A∪B={0,1,2,3,4},B={1,2,4};∴集合A中一定有元素0和3,故可排除A,B,D;故选:C.3、A【解析】由函数的奇偶性求出,进而求得答案【详解】因为是奇函数,所以,即,则,故.【点睛】本题考查函数的奇偶性,属于基础题4、C【解析】由不等式与方程的关系转化为,从而解得【详解】解:∵不等式kx2﹣2x+k<0的解集为{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故选:C5、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:6、D【解析】直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.7、D【解析】画出函数的图象,根据对称性和对数函数的图象和性质即可求出【详解】可画函数图象如下所示若关于的方程有四个不同的实数解,且,当时解得或,关于直线对称,则,令函数,则函数在上单调递增,故当时故当时所以即故选:【点睛】本题考查函数方程思想,对数函数的性质,数形结合是解答本题的关键,属于难题.8、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.9、C【解析】利用任意角的三角函数的定义,求得和的值,可得的值【详解】解:角终边上一点,,,则,故选:10、B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、4【解析】利用集合的子集个数公式求解即可.【详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.12、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:213、【解析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【详解】.故答案为:.14、##【解析】设出幂函数解析式,代入已知点坐标求解【详解】设,由已知得,所以,故答案为:15、【解析】正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为考点:正四棱柱外接球表面积三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析(2)见解析【解析】(1)根据平行四边形的性质可知,结合直线与平面平行的判定定理可得结论;(2)设,连接,由平行四边形的性质可知为中位线,从而得到,利用线面平行的判定定理,即可证出平面.【详解】证明(1)∵如图,四棱锥P-ABCD的底面为平行四边形,∴BC∥AD,又∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD;(2)设AC∩BD=H,连接MH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为PC中点,∴MH为△PAC中位线,可得MH∥PA,MH⊂平面MBD,PA⊄平面MBD,所以PA∥平面MBD【点睛】本题主要考查线面平行的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.17、(1)答案见解析(2)【解析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小问1详解】选择①,,令,则,故函数的值域为R,即的值域为R.选择②,,令,则,因为函数单调递增,所以,即的值域为.【小问2详解】令.当时,,,;当时,,,.因为,所以的最小值为0,所以,即.令,则,所以,故,即的取值范围为.18、(1),(2)时,,时,.【解析】(1)将函数化简得,可求函数的最小正周期;(2)由求出,进而求出函数在区间上的最大值和最小值及相应的的值.【小问1详解】所以.【小问2详解】因为,所以,所以,所以,当时,即,,当时,即,.19、(1),人(2)当发车时间间隔为分钟时,该线路每分钟的净收益最大,每分钟的最大净收益为元【解析】(1)由题意分别写出与时,的表达式,写成分段函数的形式,可得的表达式,可得的值;(2)分别求出时,时,净收益为的表达式,并求出其最大值,进行比较可得净收益最大及收益最大时的时间.【详解】解:当时,当时,设解得,所以,所以(人)当时,当时当时,当且仅当时,即时,取到最大值.答:的表达式为当发车时间间隔为分钟时,地铁的载客量为人.当发车时间间隔为分钟时,该线路每分钟的净收益最大,每分钟的最大净收益为元.【点睛】本题主要考查分段函数解析式的求解及函数模型的实际应用,及利用基本不等式求解函数的最值,综合性大,属于中档题.20、(1);(2).【解析】(1)由对数复合函数的单调性得,即可求参数范围.(2)首先判断的单调性并确定在上的值域,结合已知易得在内有两不等实根,,应用换元法进一步转化为两个函数有两个交点求参数范围.【小问1详解】∵在单调递增,∴在单调递增,且∴,解得.【小问2详解】由,在上是减函数.所以,在上的值域为,故,整理得:,即在内有两不等实根,,令,当时,则关于的在内有两个不等实根.整理得:,即与由两个不同的交点,又,当且仅当时等号成立,则上递减,上递增,且其值域为.∴函数图象如下:∴,即.【点睛】关键点点睛:第二问,根据对数复合函数的单调性及其区间值域,将问题转化为方程在某区间内有两个不同实根,应用参变分离将问题进一步化为两个函数在某区间内有两个交点.21、(1)②;(2)上市天,最低价元【解析】(1)根据所给的四个函数的单调性,结合表中数据所表示的变化特征进行选择即可;(2)根据表中数据代入所选函数的解析式,用待定系数法求出解析式,最后利用函数的单调性求出纪念章市场价最低时的上市天数及最低的价格.【详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论