版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河南省洛阳市第一中学高一数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.函数()的零点所在的一个区间是()A. B.C. D.2.若不计空气阻力,则竖直上抛的物体距离抛出点的高度h(单位:)与时间t(单位:)满足关系式(取,为上抛物体的初始速度).一同学在体育课上练习排球垫球,某次垫球,排球离开手臂竖直上抛的瞬时速度,则在不计空气阻力的情况下,排球在垫出点2m以上的位置大约停留()A.1 B.1.5C.1.8 D.2.23.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.4.已知函数,则函数的最小正周期为A. B.C. D.5.已知函数,则不等式的解集为()A. B.C. D.6.已知直线过,两点,则直线的斜率为A. B.C. D.7.如图,某池塘里浮萍的面积(单位:)与时间t(单位:月)的关系为,关于下列说法不正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积超过D.若浮萍蔓延到所经过的时间分别是,、,则8.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆-嫦娥五号返回:舱之所以能达到如此髙的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60m/s,则至少还需要“打水漂”的次数为()(参考数据:取lg2≈0.301,lg3≈0.477)A.4 B.5C.6 D.710.方程的实数根所在的区间是()A. B.C. D.11.设是两个单位向量,且,那么它们的夹角等于()A. B.C. D.12.函数f(x)=-|sin2x|在上零点的个数为()A.2 B.4C.5 D.6二、填空题(本大题共4小题,共20分)13.已知集合,集合,则________14.求值:____.15.已知甲、乙、丙三人去参加某公司面试,他们被该公司录取的概率分别是,且三人录取结果相互之间没有影响,则他们三人中恰有两人被录取的概率为___________.16.幂函数的图象经过点,则_____________.三、解答题(本大题共6小题,共70分)17.通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中)经过实验分析得知:(1)讲课开始后第5分钟与讲课开始后第25分钟比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道比较难的数学题,需要讲解25分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?18.已知函数在上的最大值与最小值之和为(1)求实数的值;(2)对于任意的,不等式恒成立,求实数的取值范围19.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知且,,求证:方程在区间上有实数根.20.某校食堂需定期购买大米已知该食堂每天需用大米吨,每吨大米的价格为6000元,大米的保管费用单位:元与购买天数单位:天的关系为,每次购买大米需支付其他固定费用900元该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠即原价的,该食堂是否应考虑接受此优惠条件?请说明理由21.已知集合,.(1)若,求;(2)在①,②,③,这三个条件中任选一个作为条件,求实数的取值范围.(注意:如果选择多个条件分别解答,则按第一个解答计分)22.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:具体过程如下:如图,在平面直角坐标系内作单位圆,以为始边作角.它们的终边与单位圆的交点分别为则,由向量数量积的坐标表示,有设的夹角为,则,另一方面,由图(1)可知,;由图(2)可知,于是所以,也有;所以,对于任意角有:此公式给出了任意角的正弦、余弦值与其差角的余弦值之间的关系,称为差角的余弦公式,简记作.有了公式以后,我们只要知道的值,就可以求得的值了阅读以上材料,利用图(3)单位圆及相关数据(图中是的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题:(1)判断是否正确?(不需要证明)(2)证明:
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】将各区间的端点值代入计算并结合零点存在性定理判断即可.【详解】由,,,所以,根据零点存在性定理可知函数在该区间存在零点.故选:C2、D【解析】将,代入,得出时间t,再求间隔时间即可.【详解】解:将,代入,得,解得,所以排球在垫出点2m以上的位置大约停留.故选:D3、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.4、C【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性【详解】,其中,所以函数的最小正周期,选择C【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得5、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.6、C【解析】由斜率的计算公式计算即可【详解】因为直线过,两点,所以直线的斜率为.【点睛】本题考查已知两点坐标求直线斜率问题,属于基础题7、B【解析】先利用特殊点求出函数解析式为,再利用指数函数的性质即可判断出正误【详解】解:图象可知,函数过点,,函数解析式为,浮萍每月的增长率为,故选项A正确,函数是指数函数,是曲线型函数,浮萍每月增加的面积不相等,故选项B错误,当时,,故选项C正确,对于D选项,,,,,又,,故选项D正确,故选:B8、B【解析】先化简p,q,再利用充分条件和必要条件的定义判断.【详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B9、C【解析】设石片第n次“打水漂”时的速率为vn,再根据题设列不等式求解即可.【详解】设石片第n次“打水漂”时的速率为vn,则vn=.由,得,则,所以,故,又,所以至少需要“打水漂”的次数为6.故选:C10、B【解析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B.11、C【解析】由条件两边平方可得,代入夹角公式即可得到结果.【详解】由,可得:,又是两个单位向量,∴∴∴它们的夹角等于故选C【点睛】本题考查单位向量的概念,向量数量积的运算及其计算公式,向量夹角余弦的计算公式,以及已知三角函数求角,清楚向量夹角的范围12、C【解析】在同一坐标系内画出两个函数y1=与y2=|sin2x|的图象,根据图象判断两个函数交点的个数,进而得到函数零点的个数【详解】在同一直角坐标系中分别画出函数y1=与y2=|sin2x|的图象,结合图象可知两个函数的图象在上有5个交点,故原函数有5个零点故选C【点睛】判断函数零点的个数时,可转化为判断函数和函数的图象的公共点的个数问题,解题时可画出两个函数的图象,通过观察图象可得结论,体现了数形结合在解题中的应用二、填空题(本大题共4小题,共20分)13、【解析】由交集定义计算【详解】由题意故答案为:14、【解析】根据诱导公式以及正弦的两角和公式即可得解【详解】解:因为,故答案为:15、##0.15【解析】利用相互独立事件概率乘法公式分别求出甲和乙被录取的概率、甲和丙被录取的概率、乙和丙被录取的概率,然后即可求出他们三人中恰有两人被录取的概率.【详解】因为甲、乙、丙三人被该公司录取的概率分别是,且三人录取结果相互之间没有影响,甲和乙被录取的概率为,甲和丙被录取的概率为,乙和丙被录取的概率为则他们三人中恰有两人被录取的概率为,故答案为:.16、【解析】先代入点的坐标求出幂函数,再计算即可.【详解】幂函数的图象经过点,设,,解得故,所以.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中(2)讲课开始10分钟,学生的注意力最集中,能持续10分钟(3)不能【解析】(1)分别求出比较即可;(2)由单调性得出最大值,从而得出学生的注意力最集中所持续的时间;(3)由的解,结合的单调性求解即可.【小问1详解】因为,所以讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中【小问2详解】当时,是増函数,且当时,是减函数,且所以讲课开始10分钟,学生的注意力最集中,能持续10分钟【小问3详解】当时,令,则当时,令,则则学生注意力在180以上所持续的时间为所以老师不能在学生达到所需要的状态下讲授完这道题18、(1);(2)【解析】(1)根据指对数函数的单调性得函数在上是单调函数,进而得,解方程得;(2)根据题意,将问题转化为对于任意的,恒成立,进而求函数的最值即可.【详解】解:(1)因为函数在上的单调性相同,所以函数在上是单调函数,所以函数在上的最大值与最小值之和为,所以,解得和(舍)所以实数的值为.(2)由(1)得,因为对于任意的,不等式恒成立,所以对于任意的,恒成立,当时,为单调递增函数,所以,所以,即所以实数的取值范围【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的,恒成立求解.19、⑴见解析;⑵;⑶见解析.【解析】(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑵已知,则对于恒成立,即恒成立;所以,从而解得.⑶设,则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解20、(1)10天购买一次大米;(2)见解析.【解析】根据条件建立函数关系,结合基本不等式的应用求最值即可;求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可【详解】解:设每天所支付的总费用为元,则,当且仅当,即时取等号,则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x,天购买一次大米,平均每天支付的总费用为,则,设,,则在时,为增函数,则当时,有最小值,约为,此时,则食堂应考虑接受此优惠条件【点睛】本题主要考查函数的应用问题,基本不等式的性质以及函数的单调性,属于中档题.21、(1);(2).【解析】(1)根据并集的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色低碳分布式光储充一体化综合利用项目可行性研究报告写作模板-申批备案
- 2025-2030全球草酸镥水合物行业调研及趋势分析报告
- 2025年全球及中国游戏插画行业头部企业市场占有率及排名调研报告
- 2025-2030全球单通道凝血分析仪行业调研及趋势分析报告
- 2025-2030全球EPROM 存储器行业调研及趋势分析报告
- 2025年全球及中国3,4,5-三甲氧基甲苯行业头部企业市场占有率及排名调研报告
- 2025年全球及中国代谢物定制合成服务行业头部企业市场占有率及排名调研报告
- 2025-2030全球低扭矩滚子轴承行业调研及趋势分析报告
- 2025年全球及中国汽车差速器锥齿轮行业头部企业市场占有率及排名调研报告
- 2025-2030全球高压电动车轴行业调研及趋势分析报告
- 湖南省长沙市长郡教育集团联考2023-2024学年九年级上学期期中道德与法治试卷
- 农村宅基地和建房(规划许可)申请表
- 2023年中国农业银行应急预案大全
- 村卫生室2023年度绩效考核评分细则(基本公共卫生服务)
- 关联公司合作合同
- 【建模教程】-地质统计学矿体建模简明教材
- PSM工艺安全管理
- 7天减肥餐食谱给你最能瘦的一周减肥食谱
- 最新北师大版八年级数学下册教学课件全册
- 危险化学品储存柜安全技术及管理要求培训
- Q∕SY 06342-2018 油气管道伴行道路设计规范
评论
0/150
提交评论