2023-2024学年山西省临汾市第一中学高一上数学期末经典模拟试题含解析_第1页
2023-2024学年山西省临汾市第一中学高一上数学期末经典模拟试题含解析_第2页
2023-2024学年山西省临汾市第一中学高一上数学期末经典模拟试题含解析_第3页
2023-2024学年山西省临汾市第一中学高一上数学期末经典模拟试题含解析_第4页
2023-2024学年山西省临汾市第一中学高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山西省临汾市第一中学高一上数学期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.且,则角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.已知,,则的值约为(精确到)()A. B.C. D.3.已知集合A=,B=,那么集合A∩B等于()A. B.C. D.4.对于任意实数,给定下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则5.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.6.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于A. B.C. D.7.直线xa2-A.|b| B.-C.b2 D.8.已知向量,则ABC=A30 B.45C.60 D.1209.关于的方程的所有实数解的和为A.2 B.4C.6 D.810.某几何体的三视图如图所示,则该几何体的表面积等于A. B.C. D.15二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数在区间上是单调递增函数,则实数的取值范围是_______.12.关于的不等式的解集是________13.计算:sin150°=_____14.已知函数,,则它的单调递增区间为______15.若函数在上单调递减,则实数a的取值范围为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.若幂函数在其定义域上是增函数.(1)求的解析式;(2)若,求的取值范围.17.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前一天观测得到该微生物的群落单位数量分别为8,14,26.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型:①;②,其中且.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测得到的群落单位数量分别为50和98,请从两个函数模型中选出更合适的一个,并预计从第几天开始该微生物的群落单位数量超过500.18.已知,求值:(1);(2)2.19.已知,,(1)求实数a、b的值,并确定的解析式;(2)试用定义证明在内单调递减20.已知函数是偶函数.(1)求k的值;(2)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.21.已知函数.(1)求的值;(2)设,求的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】直接由三角函数的象限符号取交集得答案.【详解】由,可得为第二或第四象限角;由,可得为第一、第四及轴非负半轴上的角∴取交集可得,是第四象限角故选:D2、B【解析】利用对数的运算性质将化为和的形式,代入和的值即可得解.【详解】.故选:B3、C【解析】根据集合的交运算即可求解.【详解】因为A=,B=,所以故选:C4、C【解析】利用特殊值判断A、B、D,根据不等式的性质证明C;【详解】解:对于A:当时,若则,故A错误;对于B:若,,,,满足,则,,不成立,故B错误;对于C:若,则,所以,故C正确;对于D:若,满足,但是,故D错误;故选:C5、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.6、A【解析】根据题意画出图形,结合图形求出半径r,再计算弧长【详解】如图所示,,,过点O作,C垂足,延长OC交于D,则,;中,,从而弧长为,故选A【点睛】本题考查了弧长公式的应用问题,求出扇形的半径是解题的关键,属于基础题7、B【解析】由题意,令x=0,则-yb2=1,即y=-b28、A【解析】由题意,得,所以,故选A【考点】向量的夹角公式【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题9、B【解析】本道题先构造函数,然后通过平移得到函数,结合图像,计算,即可【详解】先绘制出,分析该函数为偶函数,而相当于往右平移一个单位,得到函数图像为:发现交点A,B,C,D关于对称,故,故所有实数解的和为4,故选B【点睛】本道题考查了函数奇偶性判定法则和数形结合思想,绘制函数图像,即可10、B【解析】根据三视图可知,该几何体为一个直四棱柱,底面是直角梯形,两底边长分别为,高为,直四棱柱的高为,所以底面周长为,故该几何体的表面积为,故选B考点:1.三视图;2.几何体的表面积二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围【详解】解:函数的对称轴方程为,因为函数在区间上是单调递增函数,所以,解得,故答案为:12、【解析】不等式,可变形为:,所以.即,解得或.故答案为.13、【解析】利用诱导公式直接化简计算即可得出答案.【详解】sin150°=sin(180°﹣30°)=sin30°.故答案为:【点睛】本题考查了诱导公式的应用,属于基础题.14、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为15、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)或.【解析】(1)根据幂函数的概念,以及幂函数单调性,求出,即可得出解析式;(2)根据函数单调性,将不等式化为,求解,即可得出结果.【详解】(1)因为是幂函数,所以,解得或,又是增函数,即,,则;(2)因为为增函数,所以由可得,解得或的取值范围是或.17、(1)函数模型①,函数模型②(2)函数模型②更合适,从第8天开始该微生物的群落单位数量超过500【解析】(1)可通过已知条件给到的数据,分别带入函数模型①和函数模型②,列出方程组求解出参数即可完成求解;(2)将第4天和第5天得到的数据与第(1)问计算出的函数模型①和函数模型②的表达式计算出的第4天和第5天的模拟数据对比,即可做出判断并计算.【小问1详解】对于函数模型①:把及相应y值代入得解得,所以.对于函数模型②:把及相应y值代入得解得,所以.【小问2详解】对于模型①,当时,,当时,,故模型①不符合观测数据;对于模型②,当时,,当时,,符合观测数据,所以函数模型②更合适要使,则,即从第8天开始该微生物的群落单位数量超过500.18、(1);(2).【解析】(1)根据已知可求出,将所求的式子化弦为切,即可求解;(2)引进分式,利用“1”的变化,将所求式子化为的齐次分式,化弦为切,即可求解.【详解】.(1);(2)2.【点睛】关键点睛:解决问题二的关键在于利用“1”的变化,将所求式子化为的齐次分式,化弦为切.19、(1),;(2)证明见解析【解析】(1)根据条件解出即可;(2)利用单调性的定义证明即可.【小问1详解】由,,得解得,,∴【小问2详解】设,则∵,,∴,即,∴在上单调递减20、(1);(2).【解析】(1)根据偶函数得到,化简得到,解得答案.(2)化简得方程,设得到有且仅有一个正根,考虑和两种情况,计算得到答案.【详解】(1)由函数是偶函数可知:,∴,,即对一切恒成立,∴.(2)函数与的图象有且只有一个公共点,即方程有且只有一个实根.化简得:方程有且只有一个实根.令,则方程有且只有一个正根,当时,,不合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论