2023-2024学年青海玉树州数学高一上期末联考模拟试题含解析_第1页
2023-2024学年青海玉树州数学高一上期末联考模拟试题含解析_第2页
2023-2024学年青海玉树州数学高一上期末联考模拟试题含解析_第3页
2023-2024学年青海玉树州数学高一上期末联考模拟试题含解析_第4页
2023-2024学年青海玉树州数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年青海玉树州数学高一上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知二次函数在区间(2,3)内是单调函数,则实数的取值范围是()A.或 B.C.或 D.2.设函数,则下列结论不正确的是()A.函数的值域是;B.点是函数的图像的一个对称中心;C.直线是函数的图像的一条对称轴;D.将函数的图像向右平移个单位长度后,所得图像对应的函数是偶函数3.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.4.如图,四边形ABCD是平行四边形,则12A.AB B.CDC.CB D.AD5.已知正实数x,y,z,满足,则()A. B.C. D.6.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.7.设,,,则a,b,c的大小关系为()A. B.C. D.8.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.9.已知函数,则下列结论错误的是()A.的一个周期为 B.的图象关于直线对称C.的一个零点为 D.在区间上单调递减10.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在R上的奇函数,且,若对任意的,当时,都有成立,则不等式的解集为_____12.已知函数满足,当时,,若不等式的解集是集合的子集,则a的取值范围是______13.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.14._____15.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.16.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即.现在已知,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为和,即,,那么,(1)求函数的“稳定点”;(2)求证:;(3)若,且,求实数的取值范围.18.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域19.如图是函数的部分图象.(1)求函数的解析式;(2)若,,求.20.(1)已知,,求的值.(2)证明:.21.如图,已知三棱锥中,,,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面;(3)若,,求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据开口方向和对称轴及二次函数f(x)=x2-2ax+1的单调区间求参数的取值范围即可.【详解】根据题意二次函数f(x)=x2-2ax+1开口向上,单调递增区间为,单调减区间,因此当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调增函数时a≤2,当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调减函数时a≥3,综上可得a≤2或a≥3.故选:A.2、B【解析】根据余弦函数的性质一一判断即可;【详解】解:因为,,所以,即函数的值域是,故A正确;因为,所以函数关于对称,故B错误;因为,所以函数关于直线对称,故C正确;将函数的图像向右平移个单位长度得到为偶函数,故D正确;故选:B3、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.4、D【解析】由线性运算的加法法则即可求解.【详解】如图,设AC,BD交于点O,则12故选:D5、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.6、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法7、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A8、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.9、B【解析】根据周期求出f(x)最小正周期即可判断A;判断是否等于1或-1即可判断是否是其对称轴,由此判断B;判断否为0即可判断C;,根据复合函数单调性即可判断f(x)单调性,由此判断D.【详解】函数,最小正周期为故A正确;,故直线不是f(x)的对称轴,故B错误;,则,∴C正确;,∴f(x)在上单调递减,故D正确.故选:B.10、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,

这个c也就是方程f(x)=0的根.由此可判断根所在区间.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】令,则为偶函数,且,当时,为减函数所以当时,;当时,;因此当时,;当时,,即不等式的解集为点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造.12、【解析】先由已知条件判断出函数的单调性,再把不等式转化为整式不等式,再利用子集的要求即可求得a的取值范围.【详解】由可知,关于对称,又,当时,单调递减,故不等式等价于,即,因为不等式解集是集合的子集,所以,解得故答案为:13、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想14、【解析】利用三角函数公式化简,即可求出结果.【详解】,故答案为:.【点睛】本题主要考查运用三角函数公式化简求值,倍角公式的应用,考查运算求解能力.15、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:16、2【解析】先根据要求将指数式转为对数式,作乘积运算时注意使用换底公式去计算.【详解】∵,∴,∴故答案为2【点睛】底数不同的两个对数式进行运算时,有时可以利用换底公式:将其转化为同底数的对数式进行运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)“稳定点”;(2)见解析;(3)【解析】本题拿出一个概念来作为新型定义题,只需要去对定义的理解就好,要求函数的“稳定点”只需求方程中的值,即为“稳定点”若,有这是不动点的定义,此时得出,,如果,则直接满足.先求出即存在“不动点”的条件,同理取得到存在“稳定点”的条件,而两集合相等,即条件所求出的结果一直,对结果进行分类讨论.【详解】(1)由有,得:,所以函数的“稳定点”为;(2)证明:若,则,显然成立;若,设,有,则有,所以,故(3)因为,所以方程有实根,即有实根,所以或,解得又由得:即由(1)知,故方程左边含有因式所以,又,所以方程要么无实根,要么根是方程的解,当方程无实根时,或,即,当方程有实根时,则方程的根是方程的解,则有,代入方程得,故,将代入方程,得,所以.综上:的取值范围是.【点睛】作为新型定义题,题中需要求什么,我们就从条件中去得到相应的关系,比如本题中,求不动点,就去求;求稳定点,就去求,完全根据定义去处理问题.需要求出不动点及稳定点相同,则需要它们对应方程的解完全一样.18、(1);(2).【解析】(1)由函数图象顶点求出,再根据周期求出,根据点五点中的求出,即可得函数解析式;(2)先根据平移得出,由,得出,再根据三角函数图形及性质即可求出值域【详解】(1)由题设图象可知,∵周期,又,∴,∵过点,∴,即,∴,即∵,∴,故函数的解析式为;(2)由题意可知,∵,∴,∴,故,∴在上的值域为【点睛】本题主要考查由的部分图象求解析式,以及求三角函数的值域的应用,属于中档题.19、(1)(2)【解析】(1)由图象得到,且,得到,结合五点法,列出方程求得,即可得到函数的解析式;(2)由题意,求得,,结合利用两角和的正弦公式,即可求解.【小问1详解】解:由图象可得,函数的最大值为,可得,又由,可得,所以,所以,又由图可知是五点作图法中的第三个点,因为,可得,因为,所以,所以.【小问2详解】解:因为,则,又因为,所以,由,则,有,所以.20、(1);(2)证明见解析.【解析】(1)对已知式子分别平方相加即可求得.(2)分别求解左边和右边,即可证明.【详解】(1)由,,分别平方得:,。两式相加可得:,整理化简得:.(2)证明:左边.右边,所以左边=右边,即原不等式成立.21、(1)见详解;(2)见详解;(3).【解析】(1)先证,可证平面.(2)先证,得,结合可证得平面.(3)等积转换,由,可求得体积.【详解】(1)证明:因为为的中点,为的中点,所以是的中位线,.又,,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论