版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省榆林市绥德重点中学2024届中考适应性考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣12.下列命题中,错误的是()A.三角形的两边之和大于第三边B.三角形的外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形的一条中线能将三角形分成面积相等的两部分3.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是()A.3 B.﹣ C.﹣3 D.﹣64.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)5.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是()A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.56.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<17.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是()A. B. C. D.8.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.9.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为(
)A.﹣1 B.0 C.1 D.310.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+4二、填空题(本大题共6个小题,每小题3分,共18分)11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.12.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.13.如图,△ABC三边的中线AD,BE,CF的公共点G,若,则图中阴影部分面积是.14.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).15.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.16.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.三、解答题(共8题,共72分)17.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式.(2)若AC是△PCB的中线,求反比例函数的关系式.18.(8分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.19.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.20.(8分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:方案一:购买一个文具袋还送1个圆规。方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.21.(8分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF=CE.22.(10分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?23.(12分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.24.我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.2、C【解题分析】
根据三角形的性质即可作出判断.【题目详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C.【题目点拨】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.3、C【解题分析】
如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.【题目详解】解:如图,作CH⊥y轴于H.由题意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把点C(﹣1,3)代入,得到k2=﹣3,故选C.【题目点拨】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.4、A【解题分析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.【题目详解】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选A.【题目点拨】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.5、C【解题分析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.6、D【解题分析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.综上所述:m<n,所求x0的取值范围0<x0<1.故选D.点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.7、C【解题分析】试题分析:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.考点:1.扇形统计图;2.条形统计图.8、D【解题分析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.9、D【解题分析】分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆=b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.10、D【解题分析】
∵函数的图象过点A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】
设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【题目详解】解:设正多边形的边数为n,由题意得,=144°,解得n=1.故答案为1.【题目点拨】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.12、1.【解题分析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13、4【解题分析】试题分析:由中线性质,可得AG=2GD,则,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.14、174cm1.【解题分析】直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圆锥底面半径=BD=,圆锥底面周长=1×π,侧面面积=×1×π×11=.点睛:利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.15、.【解题分析】
作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.【题目详解】解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知,即四边形为矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案为:2+2.【题目点拨】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.16、(-5,4)【解题分析】试题解析:由于图形平移过程中,对应点的平移规律相同,
由点A到点A'可知,点的横坐标减6,纵坐标加3,
故点B'的坐标为即
故答案为:三、解答题(共8题,共72分)17、(2)y=2x+2;(2)y=.【解题分析】
(2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.【题目详解】(2)∵cos∠ABO=,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2∴一次函数的解析式为y=2x+2.(2)当x=0时,y=2,∴A(0,2).当y=0时,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中线,∴P(2,4).∴m=xy=2×4=4,∴反例函数的解析式为y=.【题目点拨】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.18、(1)①;(2)无变化,证明见解析;(3)①2+2+1或﹣1.【解题分析】
(1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.【题目详解】解:(1)①当θ=0°时,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案为,②当θ=180°时,如图1,∵DE∥BC,∴,∴,即:,∴,故答案为;(2)当0°≤θ<360°时,的大小没有变化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①当点E在BA的延长线时,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如图2,当点E在BD上时,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如图3,当点D在BE的延长线上时,在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案为+1或﹣1.【题目点拨】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.19、(1)证明见解析;(2)DE=CE,理由见解析;(3).【解题分析】试题分析:(1)证明△ABE∽△ACD,从而得出结论;(2)先证明∠CDE=∠ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.20、(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为元,方案二总费用为元;②方案一更合算.【解题分析】
(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.【题目详解】(1)设文具袋的单价为x元,圆规单价为y元。由题意得解得答:文具袋的单价为15元,圆规单价为3元。(2)①设圆规m个,则方案一总费用为:元方案二总费用元故答案为:元;②买圆规100个时,方案一总费用:元,方案二总费用:元,∴方案一更合算。【题目点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21、参见解析.【解题分析】分析:先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.详解:证明:平行四边形中,,,.又,,,点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.22、(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解题分析】
(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;
(2)把每月的生产量加起来即可,然后与计划相比较.【题目详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【题目点拨】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.23、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024全年物业绿化维护服务合同
- 2024年大型购物中心商业管理合同
- 2024就运输服务签订的详细合作协议
- 2024vr的产品技术产品技术开发合同范本
- 2024年度八宝山殡仪馆鲜花制品质量保证与售后服务合同
- 2024年度大数据服务合同的数据安全
- 2024年度35kv变电站施工期间安全培训合同
- 2024互联网企业与数据中心之间的服务器租赁合同
- 2024填塘渣工程质量保障合同
- 2024年度供暖设备安装工程合同
- 2024年公路标识安装合同
- 印刷排版岗位招聘笔试题与参考答案(某大型央企)2025年
- 【餐饮店铺管理系统设计与实现(论文)15000字】
- 2.1充分发挥市场在资源配置中的决定性作用(课件) 2024-2025学年高中政治 必修2 经济与社会
- 2024年秋季新人教PEP版3年级上册英语全册课件(新版教材)
- 2024年菱角项目可行性研究报告
- 农产品质量追溯系统操作手册
- 道法珍惜师生情谊教学课件 2024-2025学年统编版道德与法治七年级上册
- 2024年高考真题-化学(贵州卷) 含答案
- 2024-2030年中国线束行业市场发展趋势与前景展望战略分析报告
- 居间战略合作协议书范本
评论
0/150
提交评论