版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽定远重点中学高一上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.弧长为3,圆心角为的扇形面积为A. B.C.2 D.2.下列各式中成立的是A. B.C. D.3.A. B.C. D.4.已知,,,则a、b、c的大小关系为()A. B.C. D.5.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.6.函数的图象大致为()A. B.C. D.7.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.8.已知点(a,2)在幂函数的图象上,则函数f(x)的解析式是()A. B.C. D.9.以下四组数中大小比较正确的是()A. B.C. D.10.若不等式(>0,且≠1)在[1,2]上恒成立,则的取值范围是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)11.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.12.已知在海中一孤岛的周围有两个观察站,且观察站在岛的正北5海里处,观察站在岛的正西方.现在海面上有一船,在点测得其在南偏西60°方向相距4海里处,在点测得其在北偏西30°方向,则两个观察站与的距离为A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知正数a,b满足,则的最小值为______14.如果,且,则的化简为_____.15.若,,则等于_________.16.求值:___________.三、解答题(本大题共6小题,共70分)17.已知圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=0相交于A、B两点(1)求公共弦AB的长;(2)求经过A、B两点且面积最小的圆的方程18.已知函数.(1)判断函数的奇偶性,并说明理由;(2)用函数单调性的定义证明函数在上是减函数19.已知函数.(1)利用“五点法”完成下面表格,并画出函数在区间上的图像.(2)解不等式.20.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?21.设函数.(1)求的最小正周期和最大值;(2)求的单调递增区间.22.如图,是正方形,直线底面,,是的中点.(1)证明:直线平面;(2)求直线与平面所成角的正切值.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】弧长为3,圆心角为,故答案为B2、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.3、A【解析】,选A.4、A【解析】利用指数函数、对数函数、三角函数的知识判断出a、b、c的范围即可.【详解】因为,,所以故选:A5、D【解析】根据直线的斜率与倾斜角的关系即可求解.【详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.6、A【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.故选:A7、A【解析】由已知可作出函数的大致图象,结合图象可得到答案.【详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.8、A【解析】由幂函数的定义解出a,再把点代入解出b.【详解】∵函数是幂函数,∴,即,∴点(4,2)在幂函数的图象上,∴,故故选:A.9、C【解析】结合指数函数、对数函数、幂函数性质即可求解详解】对A,,故,错误;对B,在第一象限为增函数,故,错误;对C,为增函数,故,正确;对D,,,故,错误;故选:C【点睛】本题考查根据指数函数,对数函数,幂函数性质比较大小,属于基础题10、B【解析】分类讨论:①若a>1,由题意可得:在区间上恒成立,即在区间上恒成立,则,结合反比例函数的单调性可知当时,,此时;②若0<a<1,由题意可得:在区间上恒成立,即,,函数,结合二次函数的性质可知,当时,取得最大值1,此时要求,与矛盾.综上可得:的取值范围是(2,).本题选择B选项.点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件11、C【解析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.12、D【解析】画出如下示意图由题意可得,,又,所以A,B,C,D四点共圆,且AC为直径、在中,,由余弦定理得,∴∴(其中为圆的半径).选D二、填空题(本大题共4小题,共20分)13、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:14、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:15、【解析】由同角三角函数基本关系求出的值,再由正弦的二倍角公式即可求解.【详解】因为,,所以,所以,故答案为:.16、.【解析】根据指数幂的运算性质,结合对数的运算性质进行求解即可.【详解】,故答案为:三、解答题(本大题共6小题,共70分)17、(1)(2)(x+2)2+(y-1)2=5.【解析】(1)直接把两圆的方程作差消去二次项即可得到公共弦所在的直线方程,利用点到直线距离公式以及勾股定理可得结果;(2)经过A、B两点且面积最小的圆就是以为直径的圆,求出中点坐标及的长度,则以为直径的圆的方程可求.【详解】(1)圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=方程相减,可得得x-2y+4=0,此为公共弦AB所在的直线方程圆心C1(-1,-1),半径r1=.C1到直线AB的距离为d=故公共弦长|AB|=2.(2)过A、B且面积最小的圆就是以AB为直径的圆,x-2y+4=0与x2+y2+2x+2y-8=0联立可得,,其中点坐标为,即圆心为,半径为,所求圆的方程为(x+2)2+(y-1)2=5.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.18、(1)偶函数,证明见解析;(2)证明见解析.【解析】(1)根据奇偶性的定义判断函数的奇偶性,(2)利用函数单调性的定义证明,先取值,再作差变形,判断符号,然后得出结论【详解】解:(1)根据题意,函数为偶函数,证明:,其定义域为,有,则是偶函数;(2)证明:设,则,又由,则,必有,故在上是减函数19、(1)表格、图象见解析;(2),.【解析】(1)根据正弦函数的性质,在坐标系中描出上或的点坐标,再画出其图象即可.(2)由正弦函数的性质得,,即可得解集.【小问1详解】由正弦函数的性质,上的五点如下表:0000函数图象如下:【小问2详解】由,即,故,,所以,,故不等式解集为,.20、(1);(2)5;(3)15.【解析】(1)根据题意,列出关于砍伐面积的百分比的方程,即可容易求得;(2)到今年为止,森林剩余面积为原来的,可列出关于m的等式,解之即可.(3)设从今年开始,最多还能砍伐年,列出相应表达式有,解不等式求出的范围即可【详解】(1)设每年砍伐的百分比为,则,即,,解得:所以每年砍伐面积的百分比为(2)设经过年剩余面积为原来,则,即又由(1)知,,,解得故到今年为止,该森林已被砍伐5年(3)设从今年开始,最多还能砍伐年,则年后剩余面积为.令,即,,,解得故今后最多还能砍伐15年【点睛】关键点点睛:本题考查指数型函数数学建模在实际问题中的应用,熟练运用指数性质运算,将文字语言转化成数学语言是解题的关键,考查学生的转化能力与运算能力,属于中档题.21、(1)最小正周期,最大值为;(2).【解析】把化简为,(1)直接写出最小正周期和最大值;(2)利用正弦函数的单调性直接求出单调递增区间.【详解】(1)的最小正周期;最大值为;(2)要求的单调递增区间,只需,解得:,即的单调递增区间为.22、(1)证明见解析;(2);【解析】(1)连接,由三角形中位线可证得,根据线面平行判定定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电子商务平台软件开发与运营服务合同2篇
- 网管业务培训课程设计
- 八年级历史下册复习提要课件
- 抽样调查课程设计
- 无主灯教学课程设计
- 花草移植课程设计
- 2024年艺术的语录
- 水源热泵课程设计
- 医务科护士处理医务事务
- 食品行业客服工作者感悟
- 小学生心理问题的表现及应对措施【全国一等奖】
- 生产车间薪酬管理制度
- 小学生科普人工智能
- 2022年北京外国语大学博士生英语入学考试试题
- 提高做好群众工作的能力主讲陶通艾
- 3500A 手持式综合测试仪操作指导培训
- GB/T 1335.2-2008服装号型女子
- GB 31247-2014电缆及光缆燃烧性能分级
- DCC20网络型监视与报警
- 《简单教数学》读书心得课件
- 井底车场及硐室课件
评论
0/150
提交评论