版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川成都锦江区中考一模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列实数0,,,π,其中,无理数共有()A.1个 B.2个 C.3个 D.4个2.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度3.如图⊙O的直径垂直于弦,垂足是,,,的长为()A. B.4 C. D.84.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个5.若分式有意义,则的取值范围是()A.; B.; C.; D..6.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.117.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.2- B. C.2- D.8.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣39.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B. C. D.210.计算的值()A.1 B. C.3 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.12.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种
第1年
第2年
第3年
第4年
第5年
品种
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.13.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.14.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是.15.中国的陆地面积约为9600000km2,把9600000用科学记数法表示为.16.关于的分式方程的解为正数,则的取值范围是___________.三、解答题(共8题,共72分)17.(8分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.(1)求二次函数的表达式;(2)当﹣<x<1时,请求出y的取值范围;(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.18.(8分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.19.(8分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.20.(8分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.21.(8分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.22.(10分)计算:|﹣1|+﹣(1﹣)0﹣()﹣1.23.(12分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.24.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】
根据无理数的概念可判断出无理数的个数.【题目详解】解:无理数有:,.故选B.【题目点拨】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.2、C【解题分析】
根据图像,结合行程问题的数量关系逐项分析可得出答案.【题目详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.故选C.考点:函数的图象、行程问题.3、C【解题分析】
∵直径AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故选C.4、C【解题分析】
根据轴对称图形与中心对称图形的概念判断即可.【题目详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、B【解题分析】
分式的分母不为零,即x-2≠1.【题目详解】∵分式有意义,∴x-2≠1,∴.故选:B.【题目点拨】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.6、A【解题分析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.7、B【解题分析】
利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S-S-S,求出答案.【题目详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S−S−S=1×2−×1×1−故选B.【题目点拨】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式8、B【解题分析】
本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【题目详解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故选:B.【题目点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.9、C【解题分析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【题目详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10、A【解题分析】
根据有理数的加法法则进行计算即可.【题目详解】故选:A.【题目点拨】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(,1)或(﹣,1)【解题分析】
根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可【题目详解】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.当y=1时,x1-1=1,解得x=±当y=-1时,x1-1=-1,方程无解故P点的坐标为()或(-)【题目点拨】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.12、甲【解题分析】
根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【题目详解】甲种水稻产量的方差是:,乙种水稻产量的方差是:,∴0.02<0.124.∴产量比较稳定的小麦品种是甲.13、【解题分析】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣××=.故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.14、1【解题分析】根据平均数为10求出x的值,再由众数的定义可得出答案.解:由题意得,(2+3+1+1+x)=10,解得:x=31,这组数据中1出现的次数最多,则这组数据的众数为1.故答案为1.15、9.6×1.【解题分析】
将9600000用科学记数法表示为9.6×1.故答案为9.6×1.16、且.【解题分析】
方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【题目详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解为正数,∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案为m>2且m≠1.三、解答题(共8题,共72分)17、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解题分析】
(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.【题目详解】(1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;(1)当x=﹣时,y=;当x=1时,y=.∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;(3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵点A在点B的左侧,∴点A坐标为(﹣6,0).设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).【题目点拨】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.18、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)【解题分析】
设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【题目详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【题目点拨】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.19、(1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.【解题分析】
(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情况讨论求解即可.(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.【题目详解】解:(1)如图,过点P做PE⊥AD于点E由已知,AP=PQ,∠APQ=90°∴△APQ为等腰直角三角形∴∠PAQ=∠PAB=45°设PE=x,则AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的长为•2π•=π.故答案为45,,π.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0•BD∴9=BP×5∴BP=同理,当点Q位于BD下方时,可求得BP=故BP的长为或(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF===5过点C做CH⊥EF于点H由面积法可知CH===∴CQ的取值范围为:≤CQ≤7【题目点拨】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.20、(1)证明见解析;(1);(3)1.【解题分析】
(1)要证明DE是的⊙O切线,证明OG⊥DE即可;(1)先证明△GBA∽△EBG,即可得出=,根据已知条件即可求出BE;(3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出=,即可计算出AD.【题目详解】证明:(1)如图,连接OG,GB,∵G是弧AF的中点,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G为半径外端,∴DE为⊙O切线;(1)∵AB为⊙O直径,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根据SAS可知△AGB≌△CGB,则BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【题目点拨】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.21、(1)证明见解析;(2)AE=.【解题分析】
(1)连结AC、AC′,根据矩形的性质得到∠ABC=90°,即AB⊥CC′,根据旋转的性质即可得到结论;(2)根据矩形的性质得到AD=BC,∠D=∠ABC′=90°,根据旋转的性质得到BC′=AD′,AD=AD′,证得BC′=AD′,根据全等三角形的性质得到BE=D′E,设AE=x,则D′E=2﹣x,根据勾股定理列方程即可得到结论.【题目详解】解::(1)连结AC、AC′,∵四边形ABCD为矩形,∴∠ABC=90°,即AB⊥CC′,∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四边形ABCD为矩形,∴AD=BC,∠D=∠ABC′=90°,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024经营合同写范文
- 2024开公司合伙合同范本
- Sialyl-Lewis-A-SLeA-生命科学试剂-MCE
- 用药护理学习通超星期末考试答案章节答案2024年
- 汽车机械基础学习通超星期末考试答案章节答案2024年
- 幼儿园大班第二学期工作总结(20篇)
- 锚杆工程承发包合同
- 安装改造合同范本
- 旅游管理专业认识实习报告(3篇)
- 私企总经理聘用合同范本
- 2024年大学计算机基础考试题库附答案(完整版)
- 中山大学240英语(单考)历年考研真题及详解
- 广东省智慧高速公路建设指南(2023年版)
- 高校思想政治教育生活化研究的开题报告
- 口腔放射工作人员培训
- 建筑施工现场典型安全事故案例
- 小学三年级数学上学期期末考试试卷
- 安全生产应急管理体系建设
- (高清版)DZT 0346-2020 矿产地质勘查规范 油页岩、石煤、泥炭
- 人民防空教育-生物武器及其防护
- 企业计算机网络维护专项方案
评论
0/150
提交评论