版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“核心素养”视角下的数学教育郑毓信(2016,11)报告的主要内容一、“核心素养”之慎思(背景);二、“数学核心素养”之我见(理论分析);三、理论的实践性解读(具体的教学建议)。一、“核心素养”之慎思“当今世界各国教育都在聚焦对于人的核心素养的培养。”(顾明远)“今天,这个概念体系(指“核心素养”——注)正在成为新一轮课程改革深化的方向。”(《人民教育》,
2015年第7期,“社评”)相关事实:教师培训的热门主题第六届中国小学数学教育峰会:“聚
焦数学核心素养”(2015,10,杭州)“核心素养在课堂”(2016,11,南京)“核心素养下的小学数学‘发展课堂”研会观摩会”(2016,11,杭州)“经典与超越:核心素养下的课堂教学方式转型”(2016,11,南昌)应当坚持的基本立场我们既应高度关注教育的最新发展,但又不应盲目地去追随潮流,而应
始终坚持自己的独立思考。更为具体的建议面对任一新的理论思想或主张,我们都应认真地去思考这样三个问题:这一理论或主张的实质是什么?这一理论或主张对于我们改进教学有哪些新的启示和意义?这一理论或主张又有什么局限性或不足之处?有益的比较“2014年3月,教育部印发了《关于全面深化课程改革、落实立德树人根本任务的意见》,提出了‘核心素养’概念,为进一步深化课程改革指明了方向。”“1997年国家教委印发《关于当前积极推进中小学实施素质教育的若干意见》,提出应‘着眼于受教育者长远发展的要求,以面向全体学生,全面提高学生的基本素质为根本宗旨。’其中还特别提到,要建立一整套‘素质教育运行体系’,包括‘以全面提高学生素质为目标的课程体系。’”“1999年6月,一份关于素质教育的标志性文件——《中共中央国务院关于深化教育改革,全面推进素质教育的决定》发布,其中明确素质教育‘以培养学生的创新精神和实践能力为重点’,指出‘全面推进素质教育,是我国教育事业的一场深刻变革。’”应有的思考(1)问题1:现今对于“核心素养”的提倡与一般所谓的“素质教育”究竟有什么联系和区别,特别是,
“以素养发展为核心的教育”与新一轮课程改革中对于“三维目标”的提倡又有什么不同?进一步的思考
究竟什么是这里所说的“素养”或
“核心素养”?
现状:尽管存在不少论述,但在这方面应当说还有很长的路要走!一个更深的忧虑
在积极提倡“核心素养”的同时,我们又应防止纯粹的“口号操作”与“文字游戏”,因为,这正是教育领域的一个常见弊病,即是口号的频繁更替,以至一线教育工作者忙于应付,甚至感到无可适从。相关的论述
“从20世纪80年代……的‘素质教育’,到
2014年以来大热的‘核心素养’;从德智
体美劳‘五育’并举到‘两全、一主动’,再到‘一个灵魂、两个重点’,后来又有
‘德育为先’‘能力为重’‘全面发展’
‘因材施教’等。可以看出,教育内涵发
展的逻辑轨迹基本上是:教育实践中存在
什么问题,时代发展提出了什么新要求,
在改革中就会增加相应的新内容。”(黎雪原,“在探索中回归’,《小学教学》,
2016年第9期)正面的建议:“教育贵在坚持”。一个实例:“从来没想到,在北京一所不起眼的小区配套学校里,居然有一群人,对‘三维’目标的研究如此执着达8年之久;他们从学科知识走到了知识树,从知识树走到了能力,从能力走到了高位目标,并解决了一系列教学困惑和问题。无论课改形势发生什么变化,都没有动摇他们的研究精神。10年过去了,这所普通学校迅速成长为海淀区第一方阵的佼佼者……进校附校是这里面的‘胜利者’,胜在了‘执着’二字。”(《人民教育》,2011年第
6期)两个相关的论点应当特别重视传统课程的改变
与整合,“基础教育要去学科化”。在数学教育领域中,“核心素养”就可被等同于“核心概念”,从而我们对此也就无须予以特别的重视.第一种观点:“基础教育要去学科化”
“只从学科的角度出发,不利于学生素养的发展。”(顾明远)“基础教育要去学科化,强调综合”。我们不仅应当积极提倡各个传统学科的综合,也应以“整体性思维”完全取代“学科性思维”。
显然,按照这样一种观点,我们在当前就完全没有必要、甚至根本就不应去提及所谓的“数学核心素养”。一个相关的实践“清华附小……通过核心素养的‘打底’、‘1+X课程’的整合和直接完整性的教学,照亮了孩子人生发展的道路和未来的远景。”(《人民教育》
2015年第13期,特约评论员)“基于学生发展核心素养的‘1+X课程’改革对于当下的基础教育课程改革具有价值引领的意义。”(顾明远,《人民教育》,2015年第13期)笔者的思考(1)我们事实上即可由数学与数学教育
领域中的相关研究获得这方面的直
接启示,包括数学中对于“统一性”的追求,以及数学教育中关于“整
合数学”的研究。相关的启示
由相关研究可以看出:数学中不同学科分支的整合决非易事,我们更不应将此简单地等同于相关内容在形式上的简单组合;进而,与唯一强调统一性相比较,我们又应更为清楚地认识多元化与统一性之间的辩证关系,并应注意防止这样一种现象,即是人为地制造某种“统一”。相关的结论
总之,与唯一强调不同学科的整合相比较,这是课程改革更为重要的一个指导思想,即是我们如何能将“核心素养的培养”这一总体性教育目标落实到各个学科的教学之中,从而既能充分体现各个学科的特点,也能在总体上真正做到各有其长,各尽其职,相互配合,互相促进。必要的澄清
上面的论述并非是指我们不应对传统的学科教育作出任何改变;恰恰相反,我们应以整体性教育目标为指导积极
地去从事学科教育的改革;但同时也
应注意防止各种简单化的认识与片面
性的观点,即如对于“去学科化”的
盲目提倡,乃至将各个学科的教学简
单地纳入某个单一的模式。相关的论述“课程的整体优化与建设并不一定要
取消现在的课程分类和已经有的学科,它的着力点是打破那些已经固定的不
同学科之间界线分明的边界,是要穿
越那些的近乎僵化的学科与知识界限,使课程内容更加丰富多彩。”(谢维
和)第二种观点:“数学核心素养
”=“核心概念”相关的论点(1):“《课程标准(2011年版)》明确提出了10个核心
素养,……曾把这些称之为核心概念,但严格意义上讲,称这些词为‘概念’并不合适……本文把这10个词称之为
‘数学的核心素养。”(马云鹏)相关的论点(2)按照《高中数学课程标准》,“数学核心素养”就是指以下六个概念:数学抽象,直观想象(用数学眼光观察现实世界);逻辑推理,数学运算(用数学思维思考现实世界);数学模型,数据分析(用数学语言表达现实世界)。笔者的思考与各种简单化的论点相对照,我们应当更为深入地去思考:“走向核心素养”究竟为我们更好地认识与把握数学教育的基本目标、并由此而进一步改进数学教育教学工作提供了哪些新的启示?二、“数学核心素养”之我见
基本认识:这是“走向核心素养”给予我们的主要启示:我们应当跳出数
学、并从更大的角度去分析思考问题,特别是,究竟什么是数学对于个人发
展和社会进步所应发挥的重要作用?相关的论述“这次制定课程方案时,学科专家做的第一件事情就是思考:这门学科在孩子身上能够产生哪些变化?对孩子的素养有哪些贡献?”(张绪培)这也应当成为我们具体界定“数学核心素养”的基本途径。具体的分析(1)
什么是不同学科、特别是数学课与语文课对于学生成长的主要作用?
相关的论述:“今天比昨天慈悲,今天比昨天智慧,今天比昨天快乐,这就是成功。”
“要通过生命不断的转弯,发现多元的样貌,而不要生活在一元的状态
下。”(林清玄)
语文教育的主要作用:“什么是生命里重要的事情:一是爱,能爱,能表达爱;二是美,懂美,追求美。三是情,四是义,人要有情有义。五是感动,美好的情感能被激发。”
数学教育的主要使命:我们应当通过数学教学让学生一天比一天更加智慧,一天比一天更加聪明,也即应当努力促进学生思维的发展与理性精神的养成。具体的分析(2)
尽管目前国内所看到的主要是由“核心素养”到“数学核心素养”的发展,但后者不应被看成全新的概念,因为,只要将视野扩展到国际数学教育界,
就可看到不少相关的研究:其中都明
确提出了“数学素养”这样一个概念。研究的共同点对于社会进步与个人发展的高度关注。“一方面是社会的视角:数学素养主要涉及到了社会—经济的变化与社会的技术进步,它应当与此相适应并促进社会的整体发展;另一方面,数学素养又与个人的生活密切相关,也即应当聚焦于个人。”(G.
Fitzsimons等,“Adult
and
Mathematics”)研究的不同点
对一部分学者而言,提倡“数学素养”就意味着对于数学教育的更高要求,
特别是,我们不仅应当积极提倡所谓
的“大众数学”,也应努力实现“数
学上普遍的高标准”。
但也有一部分学者认为,“数学素养”即是为数学教育提供了“最低标准”。笔者的观点
基本立场:应当坚持“数学上普遍的高标准”,并应努力做到“少而精”。
“数学核心素养”的基本涵义:我们应当通过数学教学帮助学生学会思维,并能逐步学会想得更清晰、更深入、
更全面、更合理,包括由“理性思维”逐步走向“理性精神”。这也应当成为数学教育的基本目标。关键(1):“三维目标”之间的辩证关系第一,所谓的“情感、态度与价值观”主要体现了文化的视角,而“文化”的主要特征就在于:这是一种潜移默化的影响,也即是通过人们的日常生活与工作不知不觉地形成的。也正因此,与数学直接相关的情感、态度与价值观的养成,就离不开具体数学知识与数学思维的学习,特别是,人们主要地就是经由“理性思维”的学习与应用逐步发展起了“理性精神”,也即由“思维方法”逐步地过渡到了“情感、态度与价值观”。第二,知识应当被看成思维的实际“载体”,从而,“为讲方法而讲方法就不是讲方法的好方法”;但是,又只有以思维方法的分析带动具体知识内容的教学,我们才能将数学课真正“教活”、“教懂”、“教深”。
综上可见,在上述的“三维目标”之中,“思维”应当被看成具有特别的重要性;这也就是指,我们即应将
“帮助学生学会思维”看成数学教育的基本目标,或者说,即是将“促进学生思维的发展”看成“数学核心素养”最为基本的一个涵义。关键(2):“数学地思维”与“通过数学学会思维”
一个基本事实:数学思维并非思维的唯一可能形式,各种不同的思维形式(如文学思维、艺术思维、哲学思维、科学思维等)也都有其一定的合理性
和局限性,从而,我们就不应唯一地
强调“帮助学生学会数学地思维”,
毋宁说,后者事实上即可被看成清楚
地表明了“学科性思维”的局限性。
当然,我们并不应因此而完全否定数学思维的研究和学习,毋宁说,这即是对数学教育工作者如何做好这一方面工作提出了更高的要求:我们即应通过数学教学帮助学生学会思维!相关的建议:切实做好两个方面的研究(1)立足“数学思维”(数学家的思维方式),并以此作为发展学生思维的必要规范,包括通过与日常思维的比较帮助人们更为深入地认识后者的局限性,并能逐步形成一些新的思维方式等;关键(3)“通过数学学会思维”,并非是指如何能够想得更快、又如何能够“与众不同”,而主要是指帮助学生逐步学会想得更清晰、更深入、更全面、更合理。一个相关的调查学生眼中的“聪明”?
教师的必要引导:“聪明”不只是快,而且要巧,更不应出错,还要能清楚
地讲出道理,……结语
我们应当将“帮助学生学会思维”看成数学教育的基本目标,特别是,即应通过数学教学促进学生更为积极地去思考,并能逐步学会想得更清晰、更深入、更全面、更合理,包括由“理性思维”逐步走向“理性精神”。三、理论的实践性解读(若干具体的教学建议)正确处理“动手”与“动脑”之间的关系;努力养成学生“长时间思考”的习惯与能力;帮助学生学会“反思”;努力提升学生的思维品质。实践性解读(一):动手与动脑?
这是当前应当特别注意纠正的一个现象,即是我们在教学中往往只是重视了学生的“动手”,却忽视了如何能够促使他们积极地去“动脑”。[例1]“圆的认识”的教学基本认识:要想认识圆,必先画圆。教学实录:要求学生用圆规画圆;展示另一种画圆方法(体育老师在操场上画圆),并要求学生对画圆的具体步骤做出总结:第一,定圆心;第二,确定半径。进一步的要求:在先前的图上画半径(半径在哪里?);画直径(画得对不对?)分析与思考(1)在学生用圆规画圆以后,我们是否就应通过适当的提问与讨论引发学生的思考,即如“画圆时容易出现什么问题?”“什么又是画好圆的关键?”等等。进而,通过聚焦“圆不圆”这样一个问题,我们又可引发学生做出如下的思考:“究竟什么样的图形是圆?”分析与思考(2)我们又为什么要布置这样一个任务,即是让学生“看一看、量一量、折一折,想想圆有哪些特征?”这也就是指,圆的基本性质(半径相等、直径相等)真的是量(比)出来的吗?总之,我们在此即应特别重视动手与动脑之间的关系!更多的实例在“度量”的教学中,人们往往只是重视了实际操作,包括各种方法与工具的应用,却未能引导学生认真地去思考:“如何量才能更准、更快、更省事?”包括各种度量工具与度量方法是如何得以发现的?
几何教学中一旦引入了某个概念,如“等腰三角形”、“正方形”等,我们又往往会急于让学生通过实际度量去发现它们的特征性质,却没有认识到其中的很大一部分正是相关“定义”的直接推论,从而真正重要的也就是如何能够引导学生积极地去进行思考,如“什么是等腰三角形?”,“什么是正方形?”,等等。
总之,这正是我们在当前应当注意纠正的一个现象:我们的学生一直在做,一直在算,一直在动手,但就是不想![例2]“角的初步认识”教学中的“三次动手”与“三次提问”(高雅)教材中的处理方式(人教版,二年级上册):由生活实例引出角的概念;通过若干“正例”与“反例”帮助学生更好地掌握角的概念。相关的思考
我们如何能够通过自己的教学促使学生更为积极地去进行思考,特别是,即能由单纯的“动手”转向积极的“动脑”?具体的教学设计(1)相关教师在教学中同样采取了“由生活实例引出‘角’的概念”这一作法,但在学生们具体地列举了所曾见过的各种各样的“角”以后,教师又提出了这样一个任务:把你头脑中所想的“角”画出来?进一步的问题(问题1):“其中有哪些可以被看成真正的角,也即是数学中所说的
‘角’”?具体的教学设计(2)
在实际组织学生对上述问题进行讨论以后,教师又要求学生第二次动手去画角。
第二个问题:你们所画的“角”有什么不同?具体的教学设计(3)第三次动手:“如何能够画出一个与已知角同样大小的角?”必要的聚焦(问题3):角的大小是由什么决定的,或者说,什么是相关的因素,什么又与角的大小完全无关?相关的启示
尽管我们在此不能直接引入“角”的严格定义,但是,只须很好地加以引导,我们仍可帮助学生较好地掌握
“角”这样一个概念,特别是这样一个事实:“角的大小与边的长度无关,而是取决于‘开口’的大小”,从而
就为将来的进一步学习、包括引入“角”的严格定义打下了良好基础。更为一般的结论:判断数学课成功与否的主要标准
无论教学中采取了什么样的教学方法或模式,我们都应更加关注自己的教学是否真正促进了学生积极地去进行思考,并能逐步学会想得更清晰、更全面、更深入、更合理。实践性解读(二):长时间思考的习惯与能力的养成数学家的一项共识:数学学习十分有益于人们养成“长时间思考”的习惯与能力。但是,我们在现实中又是否过分地突出了学生“即兴思维”能力的培养,以至完全忽视了“长时间思考”的习惯与能力的养成?相关的论述(1):长时间思考的重要性
“我认为思考问题的态度有两种:一种是花费较短时间的即席思考型;一种是较长时间的长期思考
型。所谓的思考能人,大概就是指能够根据思考
的对象自由自在地分别使用这两种类型的思考态
度的人。但是,现在的……教育环境不是一个充
分培养长期思考型的环境。……没有长期思考型
训练的人,是不会深刻地思考问题的。……无论
怎样训练即席型思考,也不会掌握前面谈过的智
慧深度。”(广中平佑)一部相关的名著康纳利(D.
Kahneman):《快思慢想(Thinking,Fast
and
Slow
)》,
Penguin
Books,2011主要结论:这是“日常思维”的一个重要特点,即是“快思”占据主导的地位;然而,尽管其对于人类具有十分重要的作用,在现实中却又常常会导致一些系统性的错误。进一步的思考我们如何才能帮助学生养成“长时间的思考”的习惯与能力?
一些特别重要的环节:我们在教学中应当很好地去处理“快与慢”、“多与少”、“热闹与安静”、以及学生独立思考与合作学习、积极交流之间的关系。相关的论述(3)
“如果一节课的内容太多,承载的任务太重,学生上课时候很忙碌,思考力
就很难得到提升,学习力会越来越弱。若课堂只聚焦几个核心问题,让学生
深入思考,看上去学得少、学得慢,
但思考的方式、方法丰富了,思考力
便能提高,思考力就会越来越强。”(林莺)关于数学教学的具体启示(1)
由此可见,数学教学中就不应以思维速度的快慢作为评价学生学习情况的主要标准,而是应当更加重视如何能为学生“长时间思考”创设必要的外部环境或氛围。
例如,按照上述立场,教师在课堂上提出问题后,就不应一味地去鼓励学生尽快做出反应:“看谁先举起手
来?”“看谁最积极?”而是应当同样重视引导学生更仔细、更深入地去进行思考,特别是,我们决不应在不知不觉中对那些仍在进行思考的学生施加较大的压力。而是应当表现出更大的耐心:“孩子,不要急,慢慢
想!”
我们并应努力帮助学生进入这样一种状态,即是完全沉浸于相应的数学学习活动,包
括内容的理解、具体的解题活动,等等;
另外,这无疑也应被看成为帮助学生学会
“长时间思考”的一个必要条件,即是教学中的“引领性问题”不应太多,而应努力做到“少而精”,更应有足够的思维含金量。
另外,这无疑也应被看成为帮助学生学会
“长时间思考”的一个必要条件,即是教学中的“引领性问题”不应太多,而应努力做到“少而精”,更应有足够的思维含金量,因为,不然的话,学生就会一直处于忙于应付的状态,而不可能真正静下心来进行长时间的思考,甚至都不可能找到深入思考的很好切入点。另一相关的问题
数学教学中究竟应当如何去处理“学生独立思考”与“合作学习、积极交流”之间的关系?特别是,我们不仅应当防止这样一种现象,即是“表面上的热热闹闹,实质上却没有什么收获”,而且也应注意分析其可能的消极影响,即是因为
“合作学习”而对学生的独立思考造成一定的干扰。相关的论述(5)“数学教学可以如此组织以使学生参与到了积极的互动之中但却没有实现任何有意义的数学学习——无论这是指概念式的学习或是程序性的学习,也会有这样的学生他认为在别人看来是很有成效的课堂讨论对其而言只是分散了他对于数学概念与所倾向的方法的注意。”(J.
Boaler
&
J.Greeno)相关的论述(6)
“数学是自己思考的产物。首先要能够思考起来,用自己的见解和另
人的见解交换,会有很好的效果。
但是,思考数学问题需要很长时间。我不知道中小学数学课堂是否能够
提供很多的思考时间。”(陈省身)关于数学教学的具体启示(2)“认真地想,静静地听,轻轻地说!”当然,我们又应针对学生的不同情况提出不同的要求或不同的工作重点,也即应当依据学生的具体情况很好地去掌握相关的“度”。相关的论述(7)
“不同学段的小学生应有不同的重点:低年级的认知活动以启动儿童的认知机制为主。鼓励儿童发
表自己的想法,并倾听别人的意见而得与同侪互
动学习。中年级的教学活动以发展数学课室中的
社会性互动为主。使儿童能以澄清的方式和做法
是否合理之检查来进行讨论和辩证。高年级之教
学活动则进一步要求学生在解题活动中提升效率,进行比较科学性的解题思考,让学生回归文化传承的解题方式,以及熟练一些技巧和知识,后者也
应成为讨论的重点。(黄敏晃)[例3]“图形的放大与缩小”的教学教材中的处理方式(苏教版,六年级下册):核心问题:“放大前后,照片的长有什么关系,宽呢?”
常见的教学设计:围绕上述问题放手让学生去进行探究。相关的论述:“让学生自己发现图形放大和缩小的本质与规律”。教学中的常见现象学生只是忙于动手,却看不到积极的思维活动!特别是,我们在此究竟为什么要研究
“放大前后,照片的长有什么关系,
宽呢?”这样一个问题?这也就是指,这一问题究竟是从哪里来的?相关的论述对学生而言,与其说学数学,不如说学习数学化。(弗赖登特尔)所谓“数学化”,就是“用数学的眼光去看待世界、发现问题和解决问题”。具体的教学建议(1)
教学中应当清楚地指明“日常视角”与“数学视角”的联系与区别。
在日常生活中,所谓“放大”或“缩小”主要是指图形大小的变化,人们在此所关注的又主要是各种现实的考虑,包括美学的思考,等等。
与此相对照,数学中所说的“放大”或“缩小”,则是指这样一种变化:尽管图形的大小有所变化,但其形状却保持不变。相关的分析(2)
如果缺乏积极的思维活动,所谓的
“探究”事实上就只是一种假探究。
回顾:我们在此究竟为什么要去研究这样一个问题:“放大前后,照片的长有什么关系,宽呢?”具体的教学建议(2)加强思维的引导:我们应当如何去判断两个图形的形状是否一致?或者说,什么可以被看成图形相似与否的主要特征?就图形的“放大”和“缩小”而言,有哪些因素发生了变化?又有哪些因素保持不变?更为一般的思考
什么可以被看成平面图形的主要成分,或者说,我们主要地即应围绕哪些因
素去从事平面图形的研究?
“数学化”的又一重要涵义:由定性的描述到定量的研究!相关的教学建议(3):必要的追问
就“图形的放大与缩小”在现实中的应用而言,什么是最重要的因素?数学中又是如何对此进行表述的?
“放大与缩小”的具体区分(由“定量”向“定性”的复归),以及更高层次上的“统一”。另一相关的思考
我们或许也可从同一角度更好地去理解“先学后教”、“翻转课堂”等新的教学方法或模式的意义:相关的要求(如“学习单”与“微视频”的制作等)显然要求相关教师努力做到
“少而精”,不同的教学组织方式也为学生的独立思考提供了更大的空间和更多的时间,包括更加安静的学习环境。相关的论述(1)“真正的数学头脑是思维的头脑,是内省的头脑,这也是学校应当教学生的东西。”(H.
Ginsaberg)“只要儿童没能对自己的活动进行反思,他就达不到高一级的层次。”(弗赖登特尔)具体的分析(1)
正如“吾日三省吾身”这一格言所表明的,这是“反思”这一思维形式、包括数学中的“反思”最为重要的一个特征:不同于由于外部的促进或压力所进行的思考,“反思”更加强调主体的自我意识,也即是指相关主体的一种自觉行为。具体的分析(2)
相对于一般意义上的“反思”而言,数学中的“反思”当然也有其一定的特殊性:我们在此所希望的就是借助这种思维形式即能更有效地去促进学生思维的发展,特别是,即能逐步学会想得更清晰、更深入、更全面、更合理。
更为具体地说,主体在此时已不再集中于原先所从事的活动(包括实际操作与思维活动),而是“停下来”进行一些新的、更高层次的思考,即如自己正在做什么?是如何去做的?为什么要这样做?是不是有什么错误?又如何能够做到更好一些?……总之,这就正是对于“只是埋头去做,既不问,也不想”这样一种状态的重要超越。[例4]“主体性反思:小学数学教学应有的价值追求”(翟长丽)
基本认识:“当前,在课改理念的影响下,数学课堂发生了很大变化。数学教学中的
学习形式越来越多样化,自主探索、合作
交流、实践操作等学习方式逐渐成为数学
课堂的主流。可是,这些看似丰富的外在
形式所生成的学习成果是否与学生主体内
在的内在反思、感情体味相结合,以实现
数学知识的意义建构呢?
我们看到在很多形式化的教学背后,主体性反思是非常缺失的:学生不善
于建寻找自己的认知错误,不善于或
不愿意检验自己的思维过程,不善于
反思自己的学习策略和情感体验,自
主建构成了教师牵制下的被动参与。”
正因为此,“我们必须要把‘学会反思’纳入到‘学会学习’的实质性范畴,让‘学会反思’成为新时期‘学会学习’的新视点,成为理想课堂的新追求。”具体建议创设反思情境,培养反思意识。
首先,教师要创设和谐、民主、宽松的环境氛围,帮助学生看到学习中的问题所在,使反思性学习
活动得以和谐开展。其次,教师可以从学生的实
际和认知水平出发,通过创设反思性问题情境,
引发学生对学习过程中的基础知识、学习方法、
解题策略、情感体验等做自觉的回顾反思,使不
同个体和群体在思维碰撞中,把学生活跃的思维
推向深刻,也让学生体验到适时的反思是深化思
维的一副催化剂。(2)追溯学习过程,提高反思能力。当某个新知教学告一段落,或探究活动已经完毕,或全课教学即将结束,此时更需静静回望反思,追溯探究过程,梳理新生信息,完善认知结构。第一,课始反思,链接经验。第二,过程反思,深化思维。第三,课尾反思,省思得失。(3)探寻出错根源,提升思维品质。相关的总结
“数学知识不易终身铬记,但数学精神会激励终生;解题技能很难终身掌握,但反思
的方法会受用终身。‘思之则活,思活则
深,思深则透,思透则明,思明则新,思
新则进。”
“反思应当是一项持之以恒、日积月累的系统工程,需要教师遵循‘循序渐进’的原则和‘一以贯之’的耐心扎实践行,最终让学生进入‘学会学习’的至高境界。”几个特别重要的环节(1):“清楚地表述,有效的互动”
为了清楚地说出自己的想法,必然要求主体对自己头脑中的已有想法作出
梳理与检查;我们显然也只有更清晰、更深入、更全面、更合理地去进行思
考,才能对其他人所已表达的意见做
出适当的评论和批评,乃至实质性的
补充或改进。相关的建议
教学中应给学生更多的表达机会,包括两人对话与小组交流等;
我们又不应满足于对于“交流”、“倾听”的简单提倡,而是应当更加重视引导学生对于不同观点进行比较与分析,包括对于自身原有观点的总结与反思。
例如,在全班交流的环节,教师就不应唯一地集中于学生对于所面临问题的具体解答,而也应当进一步去追问:你现在的看法与先前的想法有什么不同?你又是如何得出这一看法的:是由别人的发言得到了启示,还是对几种不同的看法进行了综合?……[例5]关于知识表述与交流的要求(深圳市育才四小)“‘数学知识表述’……是个关键环节,决定了课堂交流的深度。”也正因此,他们就对学生的“课前预习”提出了如下要求:“假设每一个知识都让你自己去讲演,你会怎么
讲?”以下则是他们关于“交流”、“倾听”与“互动”的具体要求:“如果能让
全班同学在最短时间内理解自己的想
法,那么他就是最棒的。如果能够给
他人提出补充,提出一针见血的思路,也是成功的。”几个特别重要的环节(2):切实做好
“化错教学”
尽管数学中的“反思”并非只是指“自我纠错”,但后者显然也应被看成“帮助学生学会反思”十分重要的一个方面。
进而,尽管与一般所谓的“化错教学”相比较是,我们在此即应更加注重如何能够切实提高学生在这一方面的自觉性,但我们又仍然可以由前一方面的相关经验获得直接的启示。[例6]“化错教学”的若干经验“‘讲述‘错’的故事”(刘海玲)“当我们能够坦然地讲出错的故事时,是不是就意味着我们‘容纳’错误了;当我们把错误的故事讲得精彩时,是不是意味着我们会‘融化’错误了;当我们讲完故事后释怀甚至骄傲地一笑时,是不是意味着我们能以‘化错’为荣了。”启示:我们也应鼓励学生讲述自己如何能够通过进一步的思考获得更清晰、更深入、更全面、更合理认识的各种“故事”。(2)“用心聆听,先品后化”(崔蕾)“用‘品错、融错’的心态来放大学生思维的闪光点,引领学生从错误中求知,在错误中探究,这就是我一直以来在追求的目标!”
启示:我们并应将关注的对象由单纯的
“差错”扩展到更多的方面,包括表述、评价等等。(3)“慢下来,才能化得开”(谭青秀)“此时此刻,我真正地感受到了课堂慢下来的精彩。”
启示:这显然也可被看成十分清楚地指明了“帮助学生学会反思”十分重要的一环。几个特别重要的环节(3):用“联系的观点”指导教学
就只有采取更为广阔的视角,我们才能达到更大的认识深度,也正因此,我们就应当特别重视如何能用“联系的观点”去指导教学,即是应当努力揭示不同知识内容之间的重要联系,从而帮助学生达到更大的认识深度。[例7]“小数的意义”的教学
从“联系的观点”去分析,小数的教学显然就应特别重视这样一点,即是我们应当将小数的认识与自然数的认识联系起来:如果说自然数的认识主要涉及到了各个更大的计数单位(十、百、千等)的引入,那么,小数的认识则就体现了相反方向上的发展,也即引入了若干更小的计数单位(0.1、0.01、0.001等)。
进而,就相关的认识活动而言,这又可以被看成它们的共同关键,即是我们如何能够帮助学生很好地实现由“单一性概念结构”向“多单位概念结构”的必要过渡,特别是,即能清楚地建立起这样三个认识:(1)只有同一数位上的数才能直接进行加
减;(2)同一数位上的数的加减与个位数
的加减完全相同;(3)“进位”与“退位”的概念。(更为一般地说,就是“位值制”的概念。)[例8]“分数的初步认识”的教学应当清楚地看到在“分数”与“倍数”这两个概念之间所存在的重要联系,特别是这样一个认识:除去单位“1”,我们也可用其他的数作为比较的基本单位。就“倍数”而言,我们就是将两个数之中的较小的数用做了新的“计量单位”;分数的引入则代表了相反方向上的运作,也即将较大的数看成了新的“计量单位”。特殊地,后者显然也就直接关系到了关于分数意义的如下解释,即是“整体与部分之间的关系”“一个物体、一个计量单位或是一些物体等都可以看作一个整体。把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。”必要的提醒:分数教学的真正难点
由于分数具有多个不同的意义,因此,作为“分数的初步认识”,我们就既应帮助学生很好地掌握“部分与整体之间的关系”这样一个具体的解释,同时也应帮助他们清楚地认识到以下的事实:我们在此是在自然数以外引进了一种新的数,这也就是指,这即可被看成“数的不断扩展”这一数学思想的又一体现。1.现实意义:中国人的时髦病(1)“中国人,赶时间。最爱‘快进’,狂点
‘刷新’。评论,要抢‘秒发’。寄信,最好是特快专递。拍照,最好是立等可取。坐车,最好是高速公路、高速铁路、磁悬
浮。坐飞机,最好是直航。做事,最好是
名利双收。创业,最好是一夜暴富。结婚,最好有现房现车。排队,最好能插队,若
不能,就会琢磨:为什么别人排的队总比
我的快呢?”进一步的思考“静心思量,在教育行业内部,我们
不是也存在着诸多的急躁行为吗?学
校要办最大的,教学楼要最新的,设
备要最现代化的,教育思想要最前沿
的,教学实验最好马上出成果……。”(白宏太)
显然,由此我们即可更好地理解数学中明确提倡“长时间思考”的积极意义。即如我们在课堂中不应过多地去宣扬“看看谁已经做出来了”,而是应当表现出更大的耐心:“孩子,不要急,慢慢想!”教育是慢的艺术!(张文质)中国人的时髦病(2)
这也是现代人的普遍性弊病,即是过于任性;思想又往往过于肤浅、过于片面……
“现代人将浮浅当作时尚,把信息当做知识
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑装饰与建筑智能化管理考核试卷
- 智能家居项目报名表
- 医疗设备采购招标代理机构遴选
- 农产品供应链签约管理办法
- 建筑抗震加固合同范本
- 办公中心广告牌安装协议
- 美术培训机构兼职教师合同范本
- 酒店装修泥工施工合同
- 亲子酒店租赁协议简易模板
- 宠物医院店员入职合同
- 《草船借箭》课件
- 第三章信息系统的网络组建复习课件-粤教版(2019)高中信息技术必修二
- 小学语文人教五年级上册动静结合(郑颖慧晒课)课件
- 建设工程材料送检规范汇总
- 危险源因素识别清单(钢结构)
- 李宁导购员服务八步曲精华版
- 通用BIQS培训资料课件
- (完整版)物主代词和名词所有格专项练习
- (精选课件)蜗牛爬井的故事
- 天翼云从业者认证考前模拟题库(含答案)
- 关于小学五年级硬笔书法写字课教案全册
评论
0/150
提交评论