2022-2023学年八年级数学常考点精练(苏科版):专题17 勾股定理的证明方法(原卷版)_第1页
2022-2023学年八年级数学常考点精练(苏科版):专题17 勾股定理的证明方法(原卷版)_第2页
2022-2023学年八年级数学常考点精练(苏科版):专题17 勾股定理的证明方法(原卷版)_第3页
2022-2023学年八年级数学常考点精练(苏科版):专题17 勾股定理的证明方法(原卷版)_第4页
2022-2023学年八年级数学常考点精练(苏科版):专题17 勾股定理的证明方法(原卷版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题17勾股定理的证明方法1.如图,等腰直角三角板如图放置.直角顶点在直线上,分别过点、作直线m于点,直线于点.(1)求证:;(2)若设三边分别为、、,猜想、、存在什么关系,并简要说明理由.2.数学实验室:制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c为边长的正方形构成“弦图”(如图2),古代数学家利用“弦图”验证了勾股定理.探索研究:(1)小明将“弦图”中的2个三角形进行了运动变换,得到图3,请利用图3证明勾股定理;数学思考:(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明).3.如图,对任意符合条件的直角三角形,饶其锐角顶点逆时针旋转90°得,所以,且四边形是一个正方形,它的面积和四边形面积相等,而四边形面积等于和的面积之和,根据图形写出一种证明勾股定理的方法.4.(1)如图①是一个重要公式的几何解释.请你写出这个公式;(2)如图②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三点在一条直线上.试证明∠ACE=90°;(3)伽菲尔德(Garfield,1881年任美国第20届总统)利用(1)中的公式和图②证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.5.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.6.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法如图,火柴盒的一个侧面ABCD倒下到的位置,连接,设,,,请利用四边形的面积验证勾股定理:.7.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是,小正方形的面积是,求的值.8.图1是任意一个RtΔABC,它的两条直角边的边长分别为a,b,斜边长为c.将4个RtΔABC和正方形①②拼成一个以a+b为边长的正方形,如图2所示.将4个RtΔABC和正方形③拼成一个以a+b为边长的正方形,如图3所示.(1)图中正方形①②③的面积分别是多少?(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论