版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《多目标决策理论及方法》读书报告\第一局部:多目标决策理论及方法课程总结1多目标决策理论方法概述1.1多目标决策理论开展过程本课程全面系统的介绍了多目标决策理论与方法及其在水利水电规划与管理的应用,通过老师与同学的讲解和自学,掌握了解决多目标问题的根本理论,相信对以后解决研究过程中的根本问题会有很大的帮助。多目标决策(MultipleObjectiveDecisionMaking)是现实生活、工程或管理中普遍存在的决策问题。由于目标的增多,就产生了目标间的不可公度性,甚至矛盾性等特点,也导致了多目标决策问题求解的困难。[1]系统方案的选择取决于多个目标的满足程度,这类决策问题称为多目标决策,或称为多目标最优化。多目标决策方法是从20世纪70年代中期开展起来的一种决策分析方法。决策分析是在系统规划、设计和制造等阶段为解决当前或未来可能发生的问题,在假设干可选的方案中选择和决定最正确方案的一种分析过程。在社会经济系统的研究控制过程中我们所面临的系统决策问题常常是多目标的,例如我们在研究生产过程的组织决策时,既要考虑生产系统的产量最大,又要使产品质量高,生产本钱低等。这些目标之间相互作用和矛盾,使决策过程相当复杂使决策者常常很难轻易作出决策。这类具有多个目标的决策总是就是多目标决策。多目标决策方法现已广泛地应用于工艺过程、工艺设计、配方配比、水资源利用、能源、环境、人口、教育、经济管理等领域。多目标最优化问题最早是由意大利经济学家L.帕雷托在1896年提出来的,他把许多本质上是不可比拟的目标化成一个单一的最优化目标。1944年J.von诺伊曼和O.莫根施特恩又从对策论角度提出具有多个决策者并相互矛盾的多目标决策问题。1951年T.C.考普曼从生产和分配活动分析中提出多目标最优化问题,并引入了帕雷托优化的概念。1961年A.查纳斯和W.库珀提出目标规划。1963年L.A.瑞特从控制论角度提出多指标问题的一些根本概念。1976年R.基奈和H.拉伊发利用多属性效用方法求解多目标问题。60年代以来,出现了很多解决多目标决策问题的方法。中国70年代中期开始推广应用多目标决策方法,现在已取得了一定的成果。多目标规划问题的有效解也称为Pareto最优解。1.2多目标决策理论及方法课程主要内容通过课程我们学习了多目标决策的概念、特点、理论根底、关键要素及其开展概况。本课程简要介绍了多目标决策的两个根本理论,向量优化理论和效用理论。多目标决策问题是从非劣解集中选出最正确均衡解,从而最大限度的满足各个目标的要求。1.2.1非劣解的生成技术多目标优化问题的解是非劣解,非劣解生成技术具有适应性广泛的特点。生成非劣解集就是根据目标向量识别可行域中非劣子集的工作。迄今已提出的有代表性的生成方法主要有以下几种:1.加权法这种方法是求解向量优化问题的常用方法,对不同的目标给与相应的权重,把各目标函数的加权作为总的、单一的目标函数,求得问题的最优解,即非劣解集中的一点,根据不同权重组合求解,就生成了非劣解集。这些权重通常都是标准化了的,以使其总和为1。2.约束法将多目标中的某一目标作为根本目标,其余的目标转化为不等式约束。这样由根本目标函数及此一组新增加的约束条件就建立一个单目标最优化模型来求解。权重法和约束法是把多目标问题转化为单目标规划的形式,然后通过参数的变动来影响这个变换,便可生成非劣解集。当目标函数和约束是非线性时,可用加权方法和约束方法得到非劣解。约束法比权系数法更加通用,计算也更加简便,但是该两法的缺点是当目标数目过多时,计算量大,解纯量单目标问题的数目随目标数成指数增加;而且当目标多于3个以上时,不仅计算量大,而且失去了非劣解集图示分析的优越性。3.多目标线性规划法:只适用于由线性目标函数和线性约束组成的多目标问题,计算过程类似于单目标单纯形法,也是在单纯形表上进行;不同之处在于目标是多个而不是一个,计算迭代程序是在极点非劣解之间转换,直到获得整个非劣解集为止。然而,它只能应用于多目标线性规划,这限制了其适用范围。特点是不需要把向量优化问题转化成单目标优化的形式,直接在目标向量上交换以获得非劣解集。计算量比拟大,难以应用于大规模问题。4.多目标动态规划法:这个方法是由Tauxe等在1979年提出来的。它是借助动态规划的根本原理,不是将非根本目标处理成约束条件进行扰动求解,而是处理成状态变量进行动态规划递推计算,在递推的最终阶段不在比拟各目标状态下的根本目标值,而将各可行目标状态值连同相应的优化根本目标值取出,及为求解的非劣解集。1.2.2离散多目标决策技术从反映多目标问题的特性来看,决策变量可能是离散的,也可能是连续的。离散多目标决策技术属于方案有限和决策变量离散的决策技术。1.层次分析法将复杂问题的各因素通过划分相互联系的有序层次使之条理化;根据对一定客观现实的主观判断〔主要是两两比拟〕,将每一层次引述的重要性进行定量描述;利用数学方法确定反响每一层次全部因素的相对重要性权值;通过所有因素间的总排序,确定所有方案排序。2.ELECTRE法ELECTRE法是利用一种更弱的序列关系解决多目标决策的方法,特别适用于方案有限的多目标决策问题。这种方法实质上是一种淘汰与选择转换的算法,极限淘汰局部非劣的方案,可由决策者直接决策,或者是把全部备选方案排列成序,从而选出最为合理的方案。3.TOPSIS法TOPSIS法的根本思路是定义决策问题的理想解和负理想解,然后再可行方案中找到一个方案,使其距离理想解的距离最近,又距离负理想解的距离最远。理想解是假定的最好方案,负理想解是假定的最坏方案,该方法的决策规那么实际上是把实际可行解与理想解和负理想解相比拟。LINMAP法与TOPSIS法思路相似,只是其理想解不是事先给定的。1.2.3连续多目标决策技术主要讨论结合偏好的多目标决策技术。1.理想点法对于多目标极小化模型,为使各目标函数均尽可能地极小化,也可分别求出各目标函数的极小值,然后让各目标尽可能的接近各自的极小值来获得它的解。2.目的规划法对于某些多目标决策问题,当决策者的偏好以权重、优先权、目的和理想等值表达时,决策者的决策规那么或准那么是:各个目标函数的实际值与各目标希望到达的目的值相差越小越好。对于许多实际的多目标问题,各目标希望到达的目的值和优先等级往往在问题分析中是客观存在的,因此目的规划法不失为一种有效的多目标决策技术。3.逐步法逐步法是以逐渐分布求解线性多目标问题的方法,这种技术的最正确均衡解是以目标实际值与理想值的组合偏差最小为准那么的。这个方法假设决策者厌恶最坏的目标,并把这个最大的偏差作为对理想点偏差组合的测度,而是这个最大偏差到达最小,即为所求的均衡解。逐步法是一种迭代方法,实际上采用了极大极小规那么。1.2.4开展中的多目标决策方法随着决策科学的迅速开展,各种复杂决策问题的决策理论、数学模型应运而生,使一些决策方法的运用更具合理性、科学性和民主性。1.模糊综合评判法模糊综合评判是对多种属性的事物做出一个能合理地综合这些属性或因素的总体评判。将模糊综合评价法应用于系统评价,可以综合考虑影响系统的众多因素,根据各因素的重要程度和对它的评价结果,把原来的定性评价定量化,较好地处理系统多因素、模糊性及主观判断等问题。2.投影寻踪法投影寻踪法是20世纪70年代初开展起来的一类新兴的多元数据分析的数学方法,它是用来处理和分析高维数据,尤其是来自于非正态总体分布的高维数据的一种探索性分析的有效方法,其根本思想是把高维数据通过某种组合,投影到低维子空间中,通过极大或极小化某个投影指标,寻找出能够反映高维数据结构或特征的投影,在低维空间中对数据结构进行分析,以到达研究和分析高维数据的目的。3.遗传算法遗传算法是以达尔文进化论和孟德尔的遗传学说为根底,将生物进化过程中适者生存规那么与种群内部染色体的随机信息交换机制相结合的高效全局寻优搜索算法。它将问题中的可能解看成一个个体或染色体,并将每个个体编码成符号串的形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作〔遗传、交叉和变异〕。根据预定的目标适应度函数对每个个体进行评价,依据适者生存、优胜劣汰的进化规那么,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,以求得满足要求的最优解。开展中的多目标决策方法还有物元分析法、模糊优选法、熵权理想点法等。1.2.5多目标区域水资源规划水资源是根底性自然资源,是生态环境的控制因素之一,同时又是战略性经济资源,是一个国家综合国力的有机组成局部。水资源的开发利用必将涉及国家经济开展、地区受益、环境质量、社会福利等多方面目标。在多目标课程中主要探讨介绍了区域水资源开发次序的多目标决策、区域水资源承载能力的多目标评价及区域水资源多目标优化配置三方面问题。随着数学规划理论的开展和电子计算机的普及和应用,多目标规划与决策方法已逐步得到开展和应用,正逐步单目标的规划方法。1.2.6多目标水库优化调度随着我国水电事业的开展,水力发电已初具规模,对于大规模的水电站水库,水库调度的地位和作用越来越突出。水利调度是运用水库的调蓄能力,按来水蓄水实况和水文预报,有方案地对入库径流进行蓄泄。在保证工程平安的前提下,根据水库承当任务的主次,按照综合利用水资源的原那么进行调度,以到达防洪、兴利的目的,最大限度地满足国民经济各部门的需要。一般分为三类:兴利调度、防洪调度、和生态调度。各部门用水需求之间均存在一定的矛盾,解决这些矛盾、协调各部门之间的利益,需要运用多目标决策技术。本课程主要研究兴利调度与生态调度、兴利调度与防洪调度之间的矛盾,建立相应的数学模型,运用多目标决策理论与方法进行求解。[1]第二局部:基于层次分析法的模糊综合评价法专题研究2.1基于层次分析法的模糊综合评价法概述2.1.1模糊综合评价法的根本原理以及起源模糊综合评价法是一种基于模糊数学的综合评标方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。模糊理论能很好地反映水环境质量级别的模糊性与连续性,层次分析法能够将评价者对复杂系统的定性分析进行定量化处理,两者的结合很好地解决了隶属度与权重的问题。[2]模糊集合理论(FuzzySets)的概念于1965年由美国自动控制专家查德〔L.A.Zadeh〕教授提出,用以表达事物的不确定性,并在此根底上开展成模糊数学。模糊集理论的本质是用隶属函数作为桥梁,将不确定性在形式上转为确定性,即将模糊性加以量化,从而为模糊不确定性问题的解决提供了数学工具。模糊集理论经过四十年的开展,目前己在综合评估与决策、模糊规划、模糊可靠性分析、模糊控制等领域得到了广泛的应用。模糊数学法的建立是由于大多数的风险因素是不确定的、模糊的,用经典数学难以计算,而运用模糊数学知识,可以用数学语言去准确地描述风险因素对系统的影响程度,建立数学评价模型,得出其精确解。正是因为这一特点,这一方法目前在工程风险领域中大量被采用[3]。在实际运用中,评价对象往往受各种不确定因素的影响,其中模糊性是最重要的,所以就产生了模糊综合评价FCE〔FuzzyComprehensiveEvaluation,模糊综合评估法〕能较好地用于涉及多个模糊因素的对象的综合评估方法。荷兰学者VanLoargoven在1983年首次在层次分析法的元素排序中运用基于三角模糊数表示的模糊比拟判断、三角模糊数的运算和对数最小二乘法。1994年,我国常大勇提出利用模糊数比拟成对判断矩阵大小的新方法,还采用了统一的扩展值表示判断矩阵。[4]2.1.2层次分析法的根本原理及起源在复杂的系统中,需要考虑的因素往往很多,因素还要分成假设干层次,形成评判树状结构,对各层次的因素划分评判等级,各层次划分的评判等级数目应相同,上一层次与下一层次划分的评判等级要由单一的对应关系,以便数学处理运算,并确定各因子的隶属函数,求得各层次的模糊矩阵。评判顺序为:首先进行最低层次的模糊综合评判,其次有最低层次的评判结果构成上一层次的模糊矩阵,在进行上一层次的模糊综合,循此自底而上逐层进行模糊综合评判,可得到系统总体的综合评判结果。在1977年举行的第一届国际数学建模会议上层次分析法第一次正式走入学术界的视野并引起了学者们的注意,Satty教授在那次会议上发表了“无结构决策问题的建模——层次分析理论〞。1980年他专门推出了一本专著用于详细介绍AHP(analyticalhierarchyprocess,层次分析法)的理论、数学根底和应用。随后他又推出了几本侧重于应用方面的书籍。随着Satty和多位学者的推动,“AHP应用已涉及到‘能源政策和资源分配’、‘企业管理与生产决策’、‘经济分析与方案’、‘社会学’、‘行为科学’等十个领域〞。1982年11月Saaty的学生H.Gholamnezahad在中美能源、资源、环境学术会将层次分析法第一次介绍给中国学者。随后,许树柏等发表了国内第一篇介绍层次分析法的文章。1988年在我国召开了第一届层次分析法国际学术会议,并且称为了中国系统工程学会决策科学专业委员会每隔两年召开相关的学术年会[5]。2.1.3模糊层次分析法基于层次分析法的模糊综合判断又叫做模糊层次分析法〔fuzzyanalytichierarchyprocess,简称F-AHP〕.该方法首先利用层次分析法进行分析确定指标体系中各个指标的相对权重,进一步结合模糊数学分析方法进行综合评价。模糊综合评价在理论和应用中的关键问题是如何合理确定各评价指标的权重。为此,提出了直接根据单指标相对隶属度的模糊评价矩阵,构造层次分析法中的判断矩阵,用以确定各评价指标权重。给出了用加速遗传算法检验和修正判断矩阵的一致性和计算判断矩阵各要素的权重的模糊综合评价模型。实例说明,F-AHP方法简便和通用,计算结果较为客观和稳定,在系统工程理论和实践的各种综合评价中具有推广应用价值[6]。2.2基于层次分析法的模糊综合评价法的原理和根本步骤2.2.1模糊综合评判法原理模糊综合评判法是一种运用模糊数学原理分析和评价具有"模糊性"事物的系统分析方法,是以模糊推理为主的定性与定量相结合、精确与非精确相统一的分析评价方法。其数学模型为:A×R=B式中:A=(a1,a2,a3…am)是由参加评价指标的权重归一化处理后构成的矩阵;R为评价指标隶属于各等级的隶属度所组成的模糊关系矩阵,B是以隶属度表示的水质级别模糊评价向量[7]。2.2.2模糊综合评价法的步骤模糊综合评判的步骤如下:1.建立评判目标集。对评判对象可能作出各种评判集合的总体:V={v1,v2,...,vm}〔1〕式中各元素vi(i=1,2,...,m)代表各种可能的总评判结果。2.建立因素集。将评判目标看成是由多种因素组成的模糊集合U={u1,u2,..,um}(2)式中各元素ui(i=1,2,..,m)代表各影响因素。3.建立权重集。为了反响各因素的重要程度,对各因素应赋予相应的权数wi(i=1,2,...,m)由各权数所组成的集合W称为权重集:W={w1,w2,..,wm}〔3)通常,各权数wi(i=1,2,...,m)应满足归一性和非负条件,即:0≤wi≤1且(4)各个权数一般由统计分析或专家评分等方法进行确定。本文利用层次分析法确定各因素权重。4.确定隶属度。设评判对象按因素集中第i个因素ui进行评判,对评价集中第j个元素vj的隶属度为rij,那么按因素ui评判的结果,可简单地表示为模糊集合R={r1,r2,...,rm},R称为单因素评价集。由此,可得相应于每个因素的单因素评价集,将各因素评判集的隶属度排列成行,构成单因素评价矩阵R:(5)5.模糊综合评判。将权重集W视为1行m列的模糊矩阵,那么模糊综合评判可表示为:(6)式中:B称为模糊综合评判集;bj称为模糊综合评判指标;特别注意为模糊合成算子,表示模糊矩阵的合成运算,本文例中采用加权平均型模糊合成算子,计算公式为。6.评价指标处理。得到评判指标bj(j=1,2,..,n)之后,可根据最大隶属度原那么取最大的评判指标。bjmax相对应的评价集元素vi为评判的结果,即[7]。2.2.2层次分析法的步骤运用AHP方法解决问题,可分为4个步骤:1.构造递阶层次结构。构造递阶层次结构是对事物的剖析过程,递阶层次结构的最上层只包含1个元素,是目标的焦点,下面的层次可以包含多个元素。相邻2层的对应元素是根据某种规那么进行重要性比拟排定的,同一层中的所有元素具有同等级的量值。如果它们的差异太大,就分属于不同的层次。一般层次分析结构模型分为3层,包括目标层、准那么层和方案层。2.构造两两比拟判断矩阵。判断矩阵是表示针对上一层某要素而言,该层内与它有关联的各个要素之间的相对优越程度。例如,方案层P1,P2,..,Pn与上一层准那么CK有关联。建立这几个方案关于准那么CK的判断矩阵为:〔7〕式中:aij表示对于准那么Ck而言,方案Pi与Pj比拟而得到的相对重要程度或优越性,aij的取值是根据资料、统计数据、征求专家意见以及系统分析员的经验而确定的。层次分析法采用1-9标度法,使两要素的比拟得以定量描述。其取值如表1所示。3.由判断矩阵计算被比拟元素的相对权重。这一过程叫单层次排序,是把本层内各要素按照对上一层次的优劣程度排出顺序。计算Pi关于CK的权重时,可先求出判断矩阵的特征向量W,然后经过归一化处理,即可求出Pi关于CK的相对重要度,即权重。4.计算各层元素的组合权重。这一过程叫层次总排序。这一步是由上而下逐层进行的,利用每一层元素对其上一层各元素的相对权重,计算出层次分析模型中每一层中的所有元素对于总目标的组合权重。最终得出最低层元素相对于总体目标的组合权重[8]。2.3基于层次分析法的模糊综合评价法的优缺点2.3.1模糊综合评判法优缺点1.模糊综合评价法的优点〔1〕模糊评价通过精确的数字手段处理模糊的评价对象,能对蕴藏信息呈现模糊性的资料作出比拟科学、合理、贴近实际的量化评价。〔2〕评价结果是一个矢量,而不是一个点值,包含的信息比拟丰富,既可以比拟准确的刻画被评价对象,又可以进一步加工,得到参考信息。〔3〕在客观事物中,一些问题往往不是绝对肯定或否认,涉及到模糊因素,而模糊综合评判方法那么很好的解决了判断的模糊性和不确定性问题。2.模糊综合评价法的缺点〔1〕计算复杂,对指标权重矢量确实定主观性较强。〔2〕当指标集U较大,即指标集个数凡较大时,在权矢量和为1的条件约束下,相对隶属度权系数往往偏小,权矢量与模糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差,无法区分谁的隶属度更高,甚至造成评判失败,此时可用分层模糊评估法加以改良。〔3)在很多应用领域主观性强。模糊综合评判法虽然能够提高地质预报结果的准确性,但是也存在一定的缺点:确定各预报参数的相对权重没有统一的标准,主观因素影响较大[9]。2.3.2层次分析法的优缺点1.层次分析法优点〔1)提供了层次思维框架,便于整理思路,做到结构严谨,思路清晰。层次分析法把研究对象作为一个系统,按照分解、比拟判断、综合的思维方式进行决策,成为继机理分析、统计分析之后开展起来的系统分析的重要工具。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准那么、多时期等的系统评价。(2)简洁实用的决策方法。这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准那么又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比拟确定同一层次元素相对上一层次元素的数量关系后,通过比照进行标度,增加了判断的客观性;〔3)把定性判断与定量推断结合,增强科学性和实用性。层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保存人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。2.AHP缺乏之处(1)和一般的评价过程,特别是模糊综合评价相比,AHP客观性提高,但当因素多(超过9个)时,标度工作量太大,宜引起标度专家反感和判断混乱。(2)对标度可能取负值的情况考虑不够.标度确实需要负数,因为有些措施的实施,会对某些特定目标造成危害,如实现机械化,就对解决就业不利.虽然有关于-1~1标度的讨论,但对于这种标度下权重计算问题讨论缺乏。(3)对判断矩阵的一致性讨论得较多,而对判断矩阵的合理性考虑得不够,这是因为对标度专家的数量和质量重视不够。(4)没有充分利用已有定量信息。AHP都是研究专门的定性指标评价问题,对于既有定性指标也有定量指标的问题(这种问题更普遍)讨论得不够.事实上,为使评价客观,评价过程中应尽量使用定量指标,实在没有定量指标才用定性判断[9]。2.4基于层次分析法模糊综合评判法的应用实例2.4.1基于层次分析法的模糊综合评判法的应用基于层次分析法的模糊综合评判法在各个领域应用广泛。通过查阅文献发现这一方法在工程工程评价、水质评定以及职员评价等方方面面有着广泛的应用。工程工程风险的评估是一个多因素、多指标的复杂的评估过程,不能单纯的用好或坏来区分,对这些因素进行综合,才能做出合理的评价[11]。运用模糊综合评判法评价地下水质量是合理的,其评价结果能全面反映水质的综合状况[12]。在水环境质量综合评价中,模糊评判法和层次分析法相结合的模糊层次分析法得到了广泛的应用[13]。模糊理论能很好地反映水环境质量级别的模糊性与连续性,层次分析法能够将评价者对复杂系统的定性分析进行定量化处理,两者的结合很好地解决了隶属度与权重的问题[14]。河流综合水质评价是水环境治理中的重要根底性工作,只有对水质监测数据进行合理评价,才能制定科学的整治规划方案,采取有效的防治措施,可以说河流综合水质评价的合理性会直接影响决策[15]。模糊综合评价方法解决了水质评价中污染程度界线的模糊性问题,从而使得评价结果更具合理性和可信度[16]。按照桥梁设计的根本生命周期进行设计风险划分,提出桥梁的设计风险评价指标,并且基于层次分析法结合专家打分建立各指标的权重,再利用模糊综合评价法建立模糊评价集,并利用zadeh算子对设计风险概率和设计风险损失进行计算,进而根据风险评估矩阵得到桥梁的设计风险水平[17]。模糊理论能很好地反映水环境质量级别的模糊性与连续性,层次分析法能够将评价者对复杂系统的定性分析进行定量化处理,两者的结合很好地解决了隶属度与权重的问题[3]。2.4.2基于层次分析法模糊综合评判法的应用实例在建的某高速公路隧道位于湘南典型的喀斯特地貌区域,地表岩溶洼地、岩溶漏斗、落水洞较发育,且多以垂直发育为主。据详勘资料和水文工程地质调查成果说明:该隧道地下水丰水期潜水面高于隧道开挖工作面;隧道上部,特别是隧道K128+730--+830区段左侧上部山地中发育一系列岩溶洼地及落水洞。为地下水补给提供了有利的活动空间,大气降水聚集于岩溶洼地,经落水洞或岩溶管道垂直渗透于可溶性灰岩裂隙中,并形成溶洞。本次超前预报的掌子面桩号里程为K128+745,掌子面为中风化灰岩,岩层产状为135bN42b,节理裂隙较发育,以垂直裂隙为主。掌子面大面积淋雨状出水。同时根据高密度电法、TSP和地质雷达探测结果,得到掌子面前方30m范围内岩体含水性的模糊综合评判因素值,如表2所示。1.确定评判目标集根据预测段岩体含水程度的不同,将预测段的岩体划分为4个级别:用v1表示含大量地下水,v2表示中等含量地下水,v3表示含少量地下水,v4表示枯燥不含水,因此评价集V=(v1,v2,v3,v4)。2.建立评价因素集前文提到的4种超前预报方法的参数有很多,本文选择最重要的几个参数进行解释。建立两层模糊综合评判模型,如图1所示。图1评价因素两层分析模型根据上图建立的二级因素集为U={u1,u2,u3,u4},其中u1为地质分析结果,u2为高密度电法预报结果,u3为TSP预报结果,u4为地质雷达预报结果;一级因素集为u1={v1,v2,v3},其中v1为掌子面出水情况,v2为隧道所处地区的地质构造特征,v3为岩体结构;u3=(v5,v6,v7),其中v5为岩石纵横波速比的变化情况,v6为泊松比变化情况,v7为深度偏移图像的变化情况。3.给定权重向量权重系数是分项评分综合合成时的重要参数,它说明了各指标与评价结果之间确实定关系,说明各指标在测评中的重要程度。在确定指标权重系数时,要慎重分析各指标在目标中的地位,合理分配权数,这样才能使综合评价结果客观、科学。本例利用调查问卷征求了多位从事超前地质预报的专家的意见,综合考虑各位专家的意见,创立层次分析法一级和二级评判矩阵,结果如下:二级因素集权重评判矩阵为:经计算该矩阵的最大特征值Kmax=4,对应的特征向量W1=[0.1601,0.4804,0.3203,0.8006],归一化处理后为W1=[0.091,0.273,0.182,0.454]。该特征向量即为各二级因素的权重。类似的对于一级因素集也分别建立其权重评判矩阵,通过求解特征值及其对应的特征向量,从而获得各因素的权重。地质分析方法3个子因素的权重评判矩阵为:该矩阵的最大特征值Kmax=3,对应的特征向量经归一化处理为X2=[0.320,0.558,0.122]。该特征向量即为地质分析法各一级因素的权重。TSP方法3个子因素的权重评判矩阵为:该矩阵的最大特征值Kmax=3,对应的特征向量经归一化处理为X3=[0.286,0.143,0.571]。该特征向量即为TSP法各一级因素的权重。经检验以上矩阵均满足一致性要求。4.建立模糊评判矩阵由于地下水的预测工作在定量解释方面还存在很多缺乏,难以确地下水量的多少,或者只能半定量确实定;因此,根据表2中提供的实际探测结果,国内专家的研究成果以及实际工作经验,初步确定各因素的隶属度如表3所示。通过以上步骤就建立了隧道岩体含水情况的模糊综合评判模型。5.模糊评价由上面计算的各一级因素的相对权重及隶属度,得到相应的一级综合模糊评判结果:B1为地质分析的3个子因素综合评判的结果:岩体含大量地下水的可能性最大,为0.878。同理按照TSP方法各一级因素的相对权重及给出的隶属度,可以得到一级综合模糊评判结果:B3为TSP方法的3个子因素综合评判的结果:岩体含少量地下水的可能性最大。由于高密度电法和地质雷达法没有一级评判因素;因此,它们的一级综合模糊评判结果是给出的隶属度B2=R2=(0,1,0,0),B4=R4=(0,1,0,0)。根据式B2,B4的结果可以确定前方岩体中等含量地下水的可能性最大。以上4种方法获得的隧道前方30m范围内岩体含水情况均不同,而且差异较大;因此,必须结合二级评判因素,确定最终结果。根据各一级、二级因素的权重及评判结果可以得到二级总的模糊评判集:根据最大隶属度原那么评判,第2种情况发生的概率最大。即掌子面前方30m范围内地下水含量较丰富,存在线状涌水,局部可能存在股状涌水。经开挖验证,K128+745--+775范围内围岩为中厚层状灰岩,中风化,局部为强风化,节理裂隙较发育,以垂直裂隙为主,掌子面大面积呈线状出水,局部地段地下水呈淋雨状涌出。与模糊综合评判结果吻合很好。6.结论(1)实践证明:利用模糊综合评判法进行超前地质预报能够在一定程度上提高预报的准确性。(2)通过统计分析多位专家的意见,可以得到一个较为合理的权重。(3)文中仅介绍了模糊综合评判法在岩体含水性预报中的应用,该方法也可以应用于岩体破碎带及其他地质灾害的预报工作中,只是预报方法的选择与相对权重不同而已[18]。参考文献[1]方国华,黄显峰.多目标决策理论、方法及其应用[M].北京:科学出版社,2023.[2]LIUZhtao1,CHENXia2,ZHAOMin3.AnApplicationtoMulti-objectiveDecisionMakingonProjectInvestment[J].Optimizationofcapticalconsitruction:2007,28(4):20-22.[3]ChuKJ,HuaZL,TianH.AnimprovedF-AHPcomprehensivewaterqualityassessmentmodel[J].Sciencepaper
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第三单元《第13课 循环结构(一)》说课稿教学反思-2023-2024学年小学信息技术浙教版23五年级下册
- 5《风儿轻轻吹》说课稿-2023-2024学年道德与法治一年级下册统编版
- 10 家人的爱 说课稿-2023-2024学年道德与法治一年级下册统编版
- 2024年度版权交易合同:版权出售方与购买方之间的版权交易协议3篇
- 广东省平远县高中数学 第二章 圆锥曲线与方程 2.2.2 双曲线的几何性质(一)2说课稿 新人教A版选修1-1
- 跨越式跳高 说课稿-2023-2024学年高二上学期体育与健康人教版必修第一册
- 2023三年级语文上册 第三单元 10 在牛肚子里旅行配套说课稿 新人教版
- 2024秋八年级道德与法治上册 第二单元 青春自画像 第四课 拔节的声音说课稿 人民版
- 2024年度租赁合同标的物的使用与管理协议3篇
- 2024年度林木种苗采购与销售协议一
- 2024年出纳招聘笔试试题及答案
- 人教版四年级上册数学期末试卷(八套)
- 一题多问一道二次函数经典题的50种问法
- 【已填内容】个人业绩相关信息采集表 含政治表现、最满意、主要特点、不足
- 动词的一般过去时was,were练习
- 材料热力学--二组元相与二组元材料热力学
- 冷却塔、冷水机组吊装方案
- 北师大版《百分数的应用四》教学设计
- 放射诊疗专项监督检查表格
- GB_T 36873-2018 原种鸡群禽白血病净化检测规程(高清正版)
- 不锈钢的车削加工
评论
0/150
提交评论