版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市宝坻区达标名校初中数学毕业考试模拟冲刺卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面调查方式中,合适的是()A.调查你所在班级同学的体重,采用抽样调查方式B.调查乌金塘水库的水质情况,采用抽样调査的方式C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式2.已知二次函数的图象如图所示,则下列说法正确的是()A.<0 B.<0 C.<0 D.<03.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A. B. C. D.4.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.-5的相反数是()A.5 B. C. D.6.估计的值在()A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间7.计算3–(–9)的结果是()A.12 B.–12 C.6 D.–68.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A. B.C. D.9.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是()A. B.C. D.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个11.若分式有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1 D.x≠012.﹣的绝对值是()A.﹣ B.﹣ C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.14.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.15.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.16.一组数据:1,2,a,4,5的平均数为3,则a=_____.17.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.18.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______;扇形统计图中的圆心角α等于______;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.(6分)已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.21.(6分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.22.(8分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.23.(8分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)24.(10分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:(1)图中的a=______,b=______.(2)求快车在行驶的过程中S关于x的函数关系式.(3)直接写出两车出发多长时间相距200km?25.(10分)计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.26.(12分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为,点A的坐标是.将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).27.(12分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【题目详解】A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选B.【题目点拨】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、B【解题分析】
根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.【题目详解】解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵->0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选B.【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3、B【解题分析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.4、C【解题分析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.5、A【解题分析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.6、B【解题分析】∵9<11<16,∴,∴故选B.7、A【解题分析】
根据有理数的减法,即可解答.【题目详解】故选A.【题目点拨】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.8、A【解题分析】
由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【题目详解】解:大正方形的面积-小正方形的面积=,
矩形的面积=,
故,
故选:A.【题目点拨】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.9、D【解题分析】
根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.【题目详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【题目点拨】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.10、B【解题分析】
根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,y的值随x值的增大而增大,即可判定④.【题目详解】由抛物线的对称轴为x=2可得-b观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以a+c<观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,y的值随x值的增大而增大,④错误.综上,正确的结论有2个.故选B.【题目点拨】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11、C【解题分析】
分式分母不为0,所以,解得.故选:C.12、C【解题分析】
根据负数的绝对值是它的相反数,可得答案.【题目详解】│-│=,A错误;│-│=,B错误;││=,D错误;││=,故选C.【题目点拨】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、20000【解题分析】试题分析:1000÷=20000(条).考点:用样本估计总体.14、9.2×10﹣1.【解题分析】
根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【题目详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为:9.2×10﹣1.【题目点拨】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.15、1:3【解题分析】根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.16、1【解题分析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.17、1【解题分析】试题分析:设该商品每件的进价为x元,则150×80%-10-x=x×10%,解得x=1.即该商品每件的进价为1元.故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.18、2【解题分析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)30;;(2).【解题分析】试题分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.考点:列表法与树状图法;扇形统计图;利用频率估计概率.20、(1)且,;(2)当m=1时,方程的整数根为0和3.【解题分析】
(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出的取值;
(2)根据根与系数的关系得到x1+x2=3,,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.【题目详解】解:(1)∵关于x的分式方程的根为非负数,∴且.又∵,且,∴解得且.又∵方程为一元二次方程,∴.综上可得:且,.(2)∵一元二次方程有两个整数根x1、x2,m为整数,∴x1+x2=3,,∴为整数,∴m=1或.又∵且,,∴m1.当m=1时,原方程可化为.解得:,.∴当m=1时,方程的整数根为0和3.【题目点拨】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.21、(1)答案见解析;(2).【解题分析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【题目详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×=1(人),八年级获一等奖人数:4×=1(人),∴九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.22、内错角相等,两直线平行【解题分析】
根据内错角相等,两直线平行即可判断.【题目详解】∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【题目点拨】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23、建筑物AB的高度约为5.9米【解题分析】
在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;【题目详解】在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=-,同理:EF=BE﹣BF=,∴=-,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.【题目点拨】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.24、(1)a=6,b=;(2);(3)或5h【解题分析】
(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;(2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.【题目详解】解:(1)由s与x之间的函数的图像可知:当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,∴;(2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),∴设线段AB所在直线解析式为:S=kx+b,∴解得:k=-160,b=600,设线段BC所在的直线的解析式为:S=kx+b,∴解得:k=160,b=-600,设直线CD的解析式为:S=kx+b,解得:k=60,b=0∴(3)当两车相遇前相距200km,此时:S=-160x+600=200,解得:,当两车相遇后相距200km,此时:S=160x-600=200,解得:x=5,∴或5时两车相距200千米【题目点拨】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.25、(1)﹣10;(2)∠EFC=72°.【解题分析】
(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【题目详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=x,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计的文化与历史背景
- 房间隔缺损修复护理查房课件
- 采购合同制式条款范本3篇
- 采购合同管理的信息化发展3篇
- 虚拟人语音识别与合成-洞察分析
- 采购合同的供应链合同自由采购3篇
- 应急预案评估与修订-洞察分析
- 采购合同管理案例解析3篇
- 采购合同评审表评分标准3篇
- 采购框架协议控制3篇
- 大数据建模练习练习题及答案1-2023背题版
- 2024年山东济南轨道交通集团运营有限公司招聘笔试参考题库含答案解析
- Ⅲ类射线装置辐射工作人员考核试题 - 副本
- 土壤检测报告表
- 老年人合理用药新进展课件
- 工程经济学案例分析课程设计
- 公司投产庆典策划方案
- 服务管理的价值创造
- 内科医生如何与患者建立有效的沟通
- 植物生长与环境课程教案
- 歌厅消防安全管理制度
评论
0/150
提交评论