版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新北师大版七年级数学下册三角形知识点精讲新北师大版七年级数学下册三角形知识点精讲/新北师大版七年级数学下册三角形知识点精讲北师大版七年级下第五章三角形一、三角形三边关系和角关系1、三角形任意两边之和大于第三边。结合右边图形用数学符号表示:a+b>c2、三角形任意两边之差小于第三边。结合右边图形用数学符号表示:a-b<c三角形三个内角和等于180°结合右边图形用数学符号表示:∠A+∠B+∠C=180°4、三角形按角分为三类:(1)锐角三角形(2)直角三角形(3)钝角三角形5、直角三角形的两个锐角互余。6、巩固练习:1)、下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(单位:cm)(1)1,3,3(2)3,4,7(3)5,9,13(4)11,12,22(5)14,15,302)、已知一个三角形的两边长分别是3cm和4cm,则第三边长X的取值范围是。若X是奇数,则X的值是。这样的三角形有个;若X是偶数,则X的值是,这样的三角形又有个。3)、判断:(1)一个三角形的三个内角可以都小于60°;()(2)一个三角形最多只能有一个内角是钝角或直角;()4)、在△ABC中,(1)∠C=70°,∠A=50°,则∠B=度;(2)∠B=100°,∠A=∠C,则∠C=度;(3)2∠A=∠B+∠C,则∠A=度。5)、如下图,在Rt△CDE,∠C和∠E的关系是,其中∠C=55°,则∠E=度。6)、如上图,在Rt△ABC中,∠A=2∠B,则∠A=度,∠B=度。二、三角形的角平分线、中线和高1、三角形的角平分线:三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线。简称三角形的角平分线。如图:∵AD是三角形ABC的角平分线。∴∠BAD=∠CAD=∠BAC或∠BAC=2∠BAD=2∠CAD三角形的中线:线连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线。简称三角形的中线。如图:∵AD是三角形ABC的中线。∴BD=DC=BC或BC=2BD=2DC三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。如图:∵AM是BC边上的高∴AM⊥BC巩固练习:1)、△ABC中,∠B=80°∠C=40°,BO、CO平分∠B、∠C,则∠BOC=______.2)、如右图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC的一条角平分线,求∠ADB的度数.3)、如右图,已知,AD是BC边上的中线,AB=5cm,AD=4cm,△ABD的周长是12cm,求BC的长.三、全等三角形1、全等图形:能够重合的图形称为全等图形,全等图形的形状和大小都相同。2、全等三角形的定义:能够完全重合的两个三角形或形状相同、大小相等的两个三角形.如图:三角形ABC全等于三角形DEF表示为:△ABC≌△DEF全等三角形性质:全等三角形的对应边相等,对应角相等。如图,∵△ABC≌DFE,(已知)∴AB=DF,AC=DE,BC=FE,(全等三角形的对应边相等)∠A=∠D,∠B=∠F,∠C=∠E.(全等三角形的对应角相等)4巩固练习:已知:△ABC≌△DFE,∠A=96°,∠B=25°,DF=10cm.求∠E的度数与AB的长.三角形全等的条件1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)
2、有两边与其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角与其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4、有两角与其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、证明的书写格式:(1)通过证明,先把题设中的间接条件转化成为可以直接用于判定三角形全等的条件;(2)再写出在哪两个三角形中:具备按边角边的顺序写出可以直接用于判定全等的三个条件,并用括号把它们括起来;(3)最后写出判定这两个三角形全等的结论.6、巩固练习:1)、如图,AB=AC,BD=DC2)、如图,AM=AN,BM=BN求证:△ABD≌△ACD求证:△AMB≌△ANB证明:在△ABD和△ACD中证明:在△AMB和△ANB中∴△ABD△ACD()∴≌()3)如图,AB=AC,∠B=∠C,你能证明△ABD≌△ACE吗?证明:△ABD和△ACE中∴≌()4)、如图,已知AC与BD交于点O,AD∥BC,且AD=BC,你能说明BO=DO吗?证明:∵AD∥BC(已知)∴∠A=,()∠D=,()在中,∴≌()∴BO=DO()5)、已知:如图,AD∥BC,AD=CB,AE=CF求证:△ADF≌△CBE.作三角形1、已知三角形的两边与其夹角,求作这个三角形.已知:线段a,c,∠α。求作:ΔABC,使得BC=a,AB=c,∠ABC=∠α。 作法与过程:(1)作一条线段BC=a,(2)以B为顶点,BC为一边,作角∠DBC=∠a;(3)在射线BD上截取线段BA=c;(4)连接AC,ΔABC就是所求作的三角形。2、已知三角形的两角与其夹边,求作这个三角形.已知:线段∠α,∠β,线段c。求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c。 作法:(1)作____________=∠α;(2)在射线______上截取线段_________=c;(3)以______为顶点,以_________为一边,作∠______=∠β,________交_______于点_______.ΔABC就是所求作的三角形.3、已知三角形的三边,求作这个三角形.已知:线段a,b,c。求作:ΔABC,使得AB=c,AC=b,BC=a。 做法:(1)作线段AB=a;
(2)以A为圆心,以b为半径画弧,再以B为圆心,以c为半径画弧,两弧交于点C;
(3)连结AC,BC,则三角形ABC为所求的三角形.利用三角形全等测距离能利用三角形的全等解决实际问题,能在解决问题的过程中进行有条理的思考和表达。巩固练习:1)、如图,山脚下有A、B两点,要测出A、B两点的距离。(1)在地上取一个可以直接到达A、B点的点O,连接AO并延长到C,使AO=CO,你能完成下面的图形?(2)说明你是如何求AB的距离。2)、如图,要量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DF,使A、C、E在一条直线上,这时测得DE的长就是AB的长,试说明理由。七、探索直角三角形全等的条件斜边与一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)巩固练习:如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由答:理由:∵AF⊥BC,DE⊥BC(已知)∴∠AFB=∠DEC=°(垂直的定义)在Rt△和Rt△中∴≌()∴∠=∠()∴(内错角相等,两直线平行)八、检测练习:1、选择:三角形三个内角中,锐角最多可以是()A、0个B、1个C、2个2、如下图,△ABC中,∠A=60°,∠C=80°,∠B=度;(第2题)(第3题)(第4题)3、如上图,∠1=60°,∠D=20°,则∠A=度;4、如右图,AD⊥BC,∠1=40°,∠2=30°,则∠B=度,∠C=度5、在空白处填入“锐角”、“直角”或“钝角”:如果三角形的三个内角都相等,那么这个三角形是三角形;如果三角形的两个内角都小于40°,那么这个三角形是三角形。6、如图,AB=DC,BF=CE,AE=DF,你能找到一对全等的三角形吗?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 颈椎病年轻化
- 幼儿园课件教学模板
- 手术室洗手铺巾无菌操作
- 汇海电商运营职业规划
- 小班交通安全主题教育
- 工业设计毕业设计作品案例分析
- 职业病专题培训
- 浙江省丽水市五校高中发展共同体2024-2025学年高二上学期11月期中考试英语试题 含解析
- 第十八周安全课
- 2025版高考化学二轮复习 板块1 题型突破特训4
- 中小学实验室管理员培训课件(276页PPT)
- 房屋加装电梯施工项目施工组织设计方案
- 除数是两位数的除法练习题(一)
- 横山小学校园安全日巡查记录表
- 湖南卫视《变形计》报名表
- 不锈钢管道焊接工艺标准规范标准
- 工程结算表格
- 物业工程部年度预算模板(5附表)
- EPS应急电源设计选型-0607[1]
- 《Monsters怪兽》中英对照歌词
- 人教部编版小学道德与法治 我们受特殊保护第二课时 教案 教学设计
评论
0/150
提交评论