




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章圆锥曲线的方程3.1椭圆3.1.2椭圆的简单几何性质第1课时椭圆的简单几何性质学习任务1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.(数学抽象)2.能利用椭圆的简单几何性质求标准方程.(数学运算)3.能运用椭圆的简单几何性质分析和解决问题.(逻辑推理)必备知识·情境导学探新知01
知识点1椭圆的简单几何性质焦点位置焦点在x轴上焦点在y轴上图形
标准方程___________(a>b>0)范围__________________________________________
-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a焦点位置焦点在x轴上焦点在y轴上对称性对称轴为______,对称中心为____顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长短轴长|B1B2|=___,长轴长|A1A2|=___焦点_______________________________________焦距|F1F2|=__离心率坐标轴原点2b2aF1(-c,0),F2(c,0)F1(0,-c),F2(0,c)2c(0,1)思考(1)椭圆上的点到焦点的距离的最大值和最小值分别是多少?(2)在椭圆的性质中,哪些是与位置无关的?哪些是与位置有关的?提示:(1)最大值a+c,最小值a-c.(2)与位置无关的,如长轴长、短轴长、焦距;与位置有关的,如顶点坐标、焦点坐标等.知识点2椭圆的离心率(1)定义:椭圆的焦距与长轴长的比.(2)记法:e=___.(3)范围:_______.(4)e与椭圆形状的关系:e越接近1,椭圆越扁平,e越接近0,椭圆越接近于圆.
0<e<1
(0,4),(0,-4),(3,0),(-3,0)
86
[-3,3]
关键能力·合作探究释疑难02类型1由椭圆方程研究几何性质类型2由椭圆的几何性质求标准方程类型3椭圆的离心率问题
x012345y3.02.92.72.41.80先用描点法画出椭圆在第一象限内的图形,再利用对称性画出整个椭圆(如图所示).发现规律
试总结根据椭圆方程研究其几何性质的步骤.提示:(1)将椭圆方程化为标准形式.(2)确定焦点位置.(焦点位置不确定的要分类讨论)(3)求出a,b,c.(4)写出椭圆的几何性质.
C
[在两个方程的比较中,端点a,b均取值不同,故A,B,D都不对,而a,b,c虽然均不同,但倍数增长一样,所以比值不变,故应选C.]√
√
√
√
学习效果·课堂评估夯基础03
1234√
1234√
1234①
1234
回顾本节知识,自主完成以下问题:1.试总结根据椭圆的标准方程研究其几何性质的步骤.提示:(1)化标准,把椭圆方程化成标准形式;(2)定位置,根据标准方程中x2,y2对应分母的大小来确定焦点位置;(3)求参数,写出a,b的值,并求出c的值;(4)写性质,按要求写出椭圆的简单几何性质.2.试总结根据椭圆的几何性质求其标准方程的思路.提示:已知椭圆的几何性质,求其标准方程主要采用待定系数法,解题步骤为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代理买社保合同范本
- 亚克力盒制作合同范本
- 劳务合同范本无固定
- 公寓购买讲价合同范本
- 医院物业采购合同范本
- 加梯安装合同范本
- 公司做假雇佣合同范本
- 公司与政府合同范本
- 企业合同范本牛厂
- 交定金认购合同范本
- 第一单元时、分、秒(说课稿)-2024-2025学年三年级上册数学人教版
- 地理-浙江省杭州八县市2024学年高二第一学期期末学业水平测试试题和答案
- 《康复工程学》课件-第一讲 康复工程概论
- DeepSeek:从入门到精通
- 2025年度智慧医疗服务平台建设合同范本
- 2024项目管理人员安全培训考试题(审定)
- 2025年铜材拉丝项目可行性研究报告
- 2024 年国家公务员考试《申论》(地市级)真题及答案
- 南京2025年中国医学科学院皮肤病医院招聘13人第二批笔试历年典型考点(频考版试卷)附带答案详解
- 2024年沈阳职业技术学院高职单招语文历年参考题库含答案解析
- 《榜样9》观后感心得体会一
评论
0/150
提交评论