版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Advanced
Digital
SignalProcessing(Modern
Digital
Signal
Processing)Chapter
3
Adaptive
Linear
FilterOutput
signaly(n)Input
signalx(n)3.1
IntroductionBasic
Form
of
the
Adaptive
FilterAdaptive
filter
withadjustable
parametersSupervising
signald(n)AdaptivealgorithmErrore(n)Desired
signal
or-Adaptive
linear
filter:the
adaptive
filter
is
linear.Wiener
Filter
&
Adaptive
Linear
FilterAdaptive
linear
filterh(n)w(n)x(n)y(n):
estimation
of
s(n)Optimum
criteria:
MMSE;are
known;h(n):
nonadjustable.d(n)s(n)Wiener
filterv(n)x(n)The
statistics
of
s(n)
and
v(ont)hers;The
statistics
of
s(n)
and
v(nStationary
random
signals;
are
unknown,
but
with
anavailable
d(n)
or
e(n)
;Deterministic,
stationary
ornon-stationary
random
signalse(n)y(n)
:
estimation
of
d(n)Optimum
criteria:
MMSE
orThe
Classes
of
Adaptive
Linear
FilterBy
the
length
of
linear
filterFIR:
always
stable;
good
convergenceproperties;
possibly
linear-phasedIIR:
probably
less
estimation
error
(residual)than
FIRBy
the
structure
of
linear
filterTransversalLattice:
fast
convergence;
insensitive
to
finitword-length
effects;
modular
structureBy
the
adaptive
algorithmLeast
mean
square
(LMS)Recursive
least
square
(RLS)Other
variances
of
LMS
or
RLSOnly
the
transversal
adaptive
FIR
filters
are
discusPerformances
of
Adaptive
FilterConvergence
rate
of
adaptive
algorithmMisadjustment
Computational
complexity
of
adaptivealgorithm
Expected
properties
of
adaptive
filterstructure:
high
modularity,
parallelism,concurrency
(suitable
for
implementationwith
VLSI)Numerical
stability
and
numerical
accuracyRobustness
Adaptive
algorithm
is
insensitive
to
theinitial
values3.2
Transversal
Adaptive
FIR
FilterMultiple
Input
Adaptive
Linear
CombinerSingle
Input
Adaptive
FIR
Filter
Optimum
Solution
(MMSE)
of
AdaptiveFIR
FilterSolution
for
FIWiener
filter3.3
MSE
Performance
SurfaceMSE
Performance
FunctionQuadratic
function
with
single
globaloptimumOne
weight:
parabolaTwo
weights:
paraboloidMore
than
two
weights:
hyper-paraboloidL+1
weights:
a
hyper-paraboloid
in
the
L+2domain
space■Weight
Deviation
VectorWeight
deviation
vectorThe
v(n)
is
the
deviation
of
the
weight
vector
w(n)from
the
optimal
weight
vector
w*.Any
departure
of
the
w(n)
from
the
w*
would
causean
excess
mean-square
error
with
a
quadratic
formThe
performance
function
in
v(n)
coordinate
sysThe
v(n)
coordinate
system
is
a
shifting
of
the
w(n)coordinate
system.Principle
Axes
Coordinate
Systemprinciple
axes
coordinate
systemThe
principle
axes
coordinate
system
is
a
rotation
ofthe
v(n)
coordinate
system.The
performance
function
in
the
principle
axescoordinate
systemThe
natural
coordinate
systemThe
shifted
coordinate
systemThe
principle
axes
coordinate
systemPerformance
SurfaceSearching
the
Performance
SurfaceThe
objective
of
adaptive
algorithms
is
tosearch
the
single
optimum
point
of
performancesurface
from
an
arbitrary
start
point.3.4
LMS
Adaptive
AlgorithmThe
Gradient
of
Performance
SurfaceNatural
coordinate
systemShifted
coordinate
systemPrinciple
axes
coordinate
systemis
the
step
size
or
adaptive
constant.
Itgoverns
the
stability
of
algorithm,misadjustment
and
the
rate
of
convergence.
Steepest
Descent
Method
(B.
Widrow,1959)Basic
principlesSearching
the
optimum
point
along
thenegative
gradient
direction,
such
a
directionis
the
one
with
the
steepest
descent
of
theperformance
function.Natural
coordinate
systemPrinciple
axes
coordinate
systemShifted
coordinate
systemSufficient
condition
for
convergenceifi.e.orthenSufficientconditionTransition
processThe
convergence
takes
place
independentlyalong
each
of
the
principal
axes.
As
the
iteratprocess
advances,
the
rate
of
convergence
oneach
axis
is
governed
by
a
unique
geometricratio
determined
by
the
correspondingeigenvalue.UnstableStable
but
withdamp
vibrationStable
andconverge
graduallyTheμshould
be
a
balance
between
the
stabilityand
the
convergence
rate.Limitations
of
steepest
descent
algorithm
The
modification
of
weights
in
each
iteratioisWhen
the
weight
deviation is
very
small,the
weight
modifications
in
each
iteration
is
alvery
little,
hence
the
convergence
rate
of
steepdescent
algorithm
is
slow.
The
steepest
descent
algorithm
is
not
applicif
the
statistics
of
random
signal
is
unknownLeast
Mean
Square
(LMS)
AlgorithmEstimation
of
the
gradientLMS
algorithmUnbiasedestimatioLearning
curves
of
a
weightDeterministic
signalStationaryrandomsignalThe
average
of
50
learning
curvesDeterministic
signalStationaryrandomsignalMisadjustmentExcess
mean
square
errorHence,With
some
rational
assumptions,
it
can
be
justifthat
after
transition
processMisadjustmentIt
means
that
the
misadjustment
is
proportional
tostep
size
μ.The
μ
should
be
a
tradeoff
between
the
rate
ofconvergence
and
the
misadjustment.Some
variable
step-size
algorithms
in
which
the
μreduced
gradually
along
with
the
transition
procmay
be
adopted
sometimes
to
accommodate
therequirements
for
both
the
convergence
rate
and
tmisadjustment.Comments
on
LMS
algorithmSimplicity
and
low
computation
loadsRelatively
slow
convergence
rate
and
longtransition
processThe
BP
algorithm
of
feed-forward
neuralnetwork
is
the
generalization
of
LMS
algorithm3.5
RLS
Adaptive
AlgorithmLeast
Square
(LS)
EstimationTransversal
FIR
filterOptimum
criterionAn
accumulatederror
functionλ:
forgetting
factor,
0<λ≤1;λ<1:
suitable
for
nonstationary
signalLS
estimationLetandThenWiener-Hopf
equationby
substituting
theUnbiased
and
consistentestimation
when
theobservation
noise
is
whiteexpectation
with
the
sumIt
is
cumbersome
and
almost
impractical
tocalculate
the
M×M
inverse
matrix
R-1(n)
at
eachinstant
n,
hence
such
a
LS
estimation
is
hardlyused
in
real-time
applications.Recursive
Least
Square
(RLS)
AlgorithmThe
matrix
inversion
lemmaLet
A
and
B
be
two
positive
definite
M×Mmatrices
related
bywhere,
D:
N×N
positive
definite
matrix;C:
M×N
matrix.Then
the
inverse
matrix
of
A
can
be
expressedthenRecursive
solution
for
R-1(n)andRecursive
solution
for
w(n)RLS
algorithmInitializationGain
vectorPrediction
errorWeight
updatingT(n)
updating
Comparison
between
LMS
and
RLSalgorithmThe
LMS
is
more
simple
and
has
lesscomputation
complexity
than
the
RLSThe
RLS
usually
converges
more
quickly
thanthe
LMSThe
RLS
is
more
suitable
for
non-stationaryrandom
signals3.6
Applications
of
Adaptive
FilterAdaptive
Modeling
(System
IdentificatioNoise-free
casex(n):
known
input
signal,
often
pseudorandom
(whitnoise
exerted
to
the
unknown
system
deliberately;d(n):
desired
signal,
the
output
of
the
unknown
sysNoise-included
caseN(n):
observation
noise,
uncorrelated
with
the
x(This
makes
it
possible
to
obtain
a
system
model
onliModel:
the
adaptive
filterLinear
model:
FIR
or
IIR
filter
withcorresponding
adaptive
algorithmsNonlinear
model:
e.g.
feed-forward
neuralnetwork
(with
BP
algorithm)Adaptive
Inverse
Filtering
(Inverse
ModelDelayed
inverse
modelingDelay:
make
the
inverse
system
H-1(z)
casual;If
the
H
(z)
is
not
minimum
phase
(with
aunstable
H-1(z)),
then
a
FIR
adaptive
filter
can
beused
to
approximate
the
inverse
system.Adaptive
channel
equalizerp(n):
Pilot
signal
(training
signal),
uncorrelwith
x(n)
and
known
by
the
receiver,
its
delayserved
as
a
desired
signal
for
adaptive
equalizeSecondarysignaly(n)Reference
signalx(n)AdaptivefilterAdaptive
CancellingBasic
principlesPrimary
signal
d(n)AdaptivealgorithmThe
reference
signal
x(n)
should
be
correlated
wiall
or
some
parts
of
the
primary
signal
d(n).
Only
thcorrelated
parts
of
x(n)
and
d(n)
can
be
cancelled.Error
orresidualsignale(n)-
Canceling
maternal
heartbeat
in
fetalelectrocardiographys(n):
fetal
electrocardiography;
x(n):
maternalCanceling
noise
in
speech
signals
Adaptive
echo
canceller
in
long-distancetelephone
Adaptive
notch
filter
(cancelling
a
singlefrequency
interference)Referenceinput
x(n)AdaptivefilterActive
noise
control
(ANC)ANC
systemPrimary
noise
d(n)Residualnoisee(n)Secondary
noise
y(n)-
Secondarysound
pathy(n)x(n)W(z)d(n)-C(z)e(n)Filtered-x
LMS
algorithmIn
ANC
system,
the
secondary
sound
path
between
theadaptive
filter
and
the
combiner
makes
the
x(n)e(n)
an
iestimation
of
the
performance
surface
gradient
which
wiprobably
lead
the
LMS
algorithm
to
be
divergent.
The
filalgorithm
rectifies
the
gradient
estimation
by
filteriwith
an
estimation
of
the
secondary
sound
path.y(n)W(z)d(n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024区妇联全年工作计划
- 2021年小学语文教研组长工作计划
- 2024年三年级下学期科学教学工作计划
- 关于团支部工作计划
- 工商管理局普法依法整治计划
- 海事局年度工作计划
- 4年办事处工作总结及年工作计划
- 《浅谈振动》课件
- 2024年中心小学暑假计划例文
- 2024新学期个人学习目标计划文档
- 更换窗户施工方案
- 酒店销售部部门培训
- 智慧树知到人工智能基础章节测试答案
- 2024年山东省日照中考道德与法治试题卷
- 上海市高中生研究性课题报告
- 部编人教版七年级上册中国历史第二单元夏商周时期-测试题及答案
- DB11 1889-2021 站城一体化工程消防安全技术标准
- 2024年电梯安全总监安全员考试题参考
- 2024秋初中化学九年级上册教学设计(教案)跨学科实践活动3
- (三年经典错题本)高三化学二轮 物质结构答题规范(含解析)
- 2024年秋新湘教版七年级地理上册全册课件(新教材)
评论
0/150
提交评论