2022总复习综合练习6_第1页
2022总复习综合练习6_第2页
2022总复习综合练习6_第3页
2022总复习综合练习6_第4页
2022总复习综合练习6_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.已知曲线C的参数方程为为参数),则曲线C的焦点坐标为()A.(0,±4) B.(0,±5) C.(±4,0) D.(±5,0)2.在极坐标系中,已知A(3,),B(4,),O为极点,则的面积为()A.3 B. C. D.23.在直角坐标系xOy中曲线C1的参数方程为(为参数,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求的最小值及此时P的直角坐标.4.在平面直角坐标系xOy中,直线的参数方程为(为参数),在以坐标原点O为极点,以x轴正半轴为极轴的极坐标中,圆C的方程为.(1)写出直线l的普通方程和圆C的直角坐标方程;(2)若点P的坐标为,圆C与直线l交于A,B两点,求的值.5.已知圆的极坐标方程为(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程.(2)若点P(x,y)在该圆上,求的最大值和最小值.6.在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),直线C2的普通方程为.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求.7.在直角坐标系xOy中,已知曲线C1的参数方程:,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)若曲线C1与曲线C2相切,求a的值;(2)若曲线C1与曲线C2交于A,B两点,且|AB|=,求a的值.

试卷答案【分析】把曲线的参数方程,化为普通方程,得出曲线C的方程为,再根据椭圆的几何性质,即可求解.【详解】由曲线C的参数方程为为参数),可得,即,则,所以,又由椭圆的焦点在y轴上,所以曲线的焦点坐标为,故选A.【点睛】本题主要考查了参数方程与普通方程的互化,以及椭圆的几何性质,其中解答中准确把曲线的参数方程互为普通方程,熟记椭圆的几何性质是解答的关键,着重考查了运算与求解能力,属于基础题.【分析】由点,得到,且,利用三角形的面积公式,即可求解,得到答案.【详解】由题意知,点,可得,且,所以的面积为,故选C.【点睛】本题主要考查了极坐标的应用,以及三角形的面积公式,其中解答中熟练应用点的极坐标和三角形的面积公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.3.(1)..(2);.【分析】(1)消参数可得的普通方程;将的极坐标方程展开,根据,即可求得的直角坐标方程。(2)设,利用点到直线距离公式表示出点P到直线的距离,根据三角函数的性质即可求得最小值,将代入参数方程即可求得P点坐标。【详解】(1)曲线的参数方程为(为参数),移项后两边平方可得,即有椭圆;曲线的极坐标方程为,即有,由,,可得,即有的直角坐标方程为直线;(2)设,由到直线的距离为当时,的最小值为,此时可取,即有.【点睛】本题考查了参数方程与普通方程、极坐标与普通方程的转化,参数方程在求取值范围中的应用,属于中档题。4.(1)(2)试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.5.(1)普通方程:,圆的参数方程为:,为参数;(2).试题分析:(1)圆的普通方程与圆的极坐标方程之间的转换关系在于圆上一点与极径,极角间的关系:,圆的普通方程与圆的参数方程的关系也在于此,即圆上一点与圆半径,圆上点与圆心连线与轴正向夹角的关系:;(2)利用圆的参数方程,将转化为关于的三角函数关系求最值,一般将三角函数转化为的形式.试题解析:由圆上一点与极径,极角间的关系:,可得,并可得圆的标准方程:,所以得圆的参数方程为:,为参数.由(1)可知:故.考点:(1)圆的普通方程与圆的参数方程和极坐标之间的关系;(2)利用参数方程求最值.6.(1),;(2).【分析】(1)先将曲线的参数方程化为普通方程,再化为极坐标方程;根据直线过原点,即可得的极坐标方程。(2)联立直线的极坐标方程与曲线的极坐标方程,根据极径的关系代入即可求得的值。【详解】(1)由曲线的参数方程为(为参数),得曲线普通方程为,所以曲线的极坐标方程为,即.因为直线过原点,且倾斜角为,所以直线的极坐标方程为.(2)设点,对应的极径分别为,,由,得,所以,,又,,所以.【点睛】本题考查了参数方程、普通方程和极坐标方程的转化,利用极坐标求线段和,属于中档题。7.(1);(2)【分析】(1)先把曲线和曲线化成普通方程,再根据点到直线距离等于半径列等式可解得;(2)联立直线与曲线的参数方程,利用参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论