内蒙古自治区呼和浩特市2024届中考数学模拟预测题含解析_第1页
内蒙古自治区呼和浩特市2024届中考数学模拟预测题含解析_第2页
内蒙古自治区呼和浩特市2024届中考数学模拟预测题含解析_第3页
内蒙古自治区呼和浩特市2024届中考数学模拟预测题含解析_第4页
内蒙古自治区呼和浩特市2024届中考数学模拟预测题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区呼和浩特市2024届中考数学模拟预测题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是测量一物体体积的过程:步骤一:将180mL的水装进一个容量为300mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下2.估算的值是在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间3.如图所示的几何体的左视图是()A. B. C. D.4.下列图形中,不是中心对称图形的是()A.平行四边形 B.圆 C.等边三角形 D.正六边形5.已知二次函数(为常数),当时,函数的最小值为5,则的值为()A.-1或5 B.-1或3 C.1或5 D.1或36.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为()A.(5,5) B.(5,4) C.(6,4) D.(6,5)7.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.8.若,,则的值是()A.2 B.﹣2 C.4 D.﹣49.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是()A.﹣4 B.﹣2 C.1 D.210.如图,圆O是等边三角形内切圆,则∠BOC的度数是()A.60° B.100° C.110° D.120°二、填空题(共7小题,每小题3分,满分21分)11.一元二次方程有两个不相等的实数根,则的取值范围是________.12.若代数式有意义,则实数x的取值范围是____.13.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).14.若代数式在实数范围内有意义,则x的取值范围是_______.15.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.16.(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.17.如图,已知等腰直角三角形ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰直角三角形ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰直角三角形ADE……依此类推,直到第五个等腰直角三角形AFG,则由这五个等腰直角三角形所构成的图形的面积为__________.三、解答题(共7小题,满分69分)18.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.19.(5分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.20.(8分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.21.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)△ABC的面积等于_____;(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.22.(10分)计算:﹣4cos45°+()﹣1+|﹣2|.23.(12分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.24.(14分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.2、C【解题分析】

求出<<,推出4<<5,即可得出答案.【题目详解】∵<<,∴4<<5,∴的值是在4和5之间.故选:C.【题目点拨】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.3、A【解题分析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.4、C【解题分析】

根据中心对称图形的定义依次判断各项即可解答.【题目详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【题目点拨】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.5、A【解题分析】

由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1,可得x=1时,y取得最小值5;②若h>3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【题目详解】解:∵x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1,当时,y随x的增大而增大,∴当x=1时,y取得最小值5,可得:,解得:h=−1或h=3(舍),∴h=−1;②若h>3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上所述,h的值为−1或5,故选:A.【题目点拨】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.6、B【解题分析】

由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【题目详解】解:∵四边形ABCD是矩形

∴AB∥CD,AB=CD,AD=BC,AD∥BC,

∵A(1,4)、B(1,1)、C(5,1),

∴AB∥CD∥y轴,AD∥BC∥x轴

∴点D坐标为(5,4)

故选B.【题目点拨】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.7、C【解题分析】

根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【题目详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【题目点拨】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.8、D【解题分析】因为,所以,因为,故选D.9、B【解题分析】

求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.【题目详解】解方程组,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交点坐标是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故选B.【题目点拨】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.10、D【解题分析】

由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.【题目详解】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵圆O是等边三角形内切圆,∴OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故选D.【题目点拨】此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).二、填空题(共7小题,每小题3分,满分21分)11、且【解题分析】

根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【题目详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k<2且k≠1.故答案为k<2且k≠1.【题目点拨】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.12、x≠﹣5.【解题分析】

根据分母不为零分式有意义,可得答案.【题目详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【题目点拨】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.13、6【解题分析】试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.解:过S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴SC=SB•sin60°=1×=6(海里).即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.故答案为:6.14、【解题分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.15、5【解题分析】

先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.【题目详解】∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=﹣1+52BF,即AF与BF的比值为【题目点拨】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.16、12【解题分析】根据题意观察图象可得BC=5,点P在AC上运动时,BP⊥AC时,BP有最小值,观察图象可得,BP的最小值为4,即BP⊥AC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以ΔABC的面积是117、12.2【解题分析】

∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n个等腰直角三角形的面积是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2.故答案为12.2.三、解答题(共7小题,满分69分)18、(1)24.2米(2)超速,理由见解析【解题分析】

(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【题目详解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.19、(1)(2)证明见解析;(3)1.【解题分析】

(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;

(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;

(3)易证△PAC∽△PCB,由相似三角形的性质可得到,又因为tan∠ABC=,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.【题目详解】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合题意,舍去).∴PC=4k=4×6=1.【题目点拨】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.20、(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.1.【解题分析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

点A(1,3)代入反比例函数y=,

得k=3,

∴反比例函数的表达式y=,

(2)把B(3,b)代入y=得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,

∴D(3,﹣1),设直线AD的解析式为y=mx+n,

把A,D两点代入得,,

解得m=﹣2,n=1,

∴直线AD的解析式为y=﹣2x+1,令y=0,得x=,

∴点P坐标(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.21、6作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G【解题分析】

(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.【题目详解】解:(1)4×3÷2=6,故△ABC的面积等于6.(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG即为所求正方形.

故答案为:6,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G.【题目点拨】本题主要考查了作图-应用与设计作图、三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论