秦九韶算法介绍和实例分析_第1页
秦九韶算法介绍和实例分析_第2页
秦九韶算法介绍和实例分析_第3页
秦九韶算法介绍和实例分析_第4页
秦九韶算法介绍和实例分析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

秦九韶算法算法案例第二课时1、求两个数的最大公约数的两种方法分别是()和()。2、两个数21672,8127的最大公约数是()A、2709B、2606C、2703D、2706复习引入:新课讲解:思考怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?计算多项式f(x)

=x5+x4+x3+x2+x+1当x=5的值的算法:算法1:因为f(x)

=x5+x4+x3+x2+x+1所以f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906算法2:f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1分析:两种算法中各用了几次乘法运算?和几次加法运算?算法1:因为f(x)

=x5+x4+x3+x2+x+1所以f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906算法2:f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1共做了1+2+3+4=10次乘法运算,5次加法运算。共做了4次乘法运算,5次加法运算。《数书九章》——秦九韶算法设是一个n次的多项式对该多项式按下面的方式进行改写:思考:当知道了x的值后该如何求多项式的值?这是怎样的一种改写方式?最后的结果是什么?要求多项式的值,应该先算最内层的一次多项式的值,即然后,由内到外逐层计算一次多项式的值,即最后的一项是什么?这种将求一个n次多项式f(x)的值转化成求n个一次多项式的值的方法,称为秦九韶算法。思考:在求多项式的值上,这是怎样的一个转化?

通过一次式的反复计算,逐步得出高次多项式的值,对于一个n次多项式,只需做n次乘法和n次加法即可。秦九韶算法的特点:例:已知一个五次多项式为用秦九韶算法求这个多项式当x=5的值。解:将多项式变形:按由里到外的顺序,依此计算一次多项式当x=5时的值:所以,当x=5时,多项式的值等于17255.2你从中看到了怎样的规律?怎么用程序框图来描述呢?(1)、算法步骤:第一步:输入多项式次数n、最高次项的系数an和x的值.第二步:将v的值初始化为an,将i的值初始化为n-1.第三步:输入i次项的系数an.第四步:v=vx+ai,i=i-1.第五步:判断i是否大于或等于0,若是,则返回第三步;否则,输出多项式的值v。思考:你能设计程序把“秦九韶算法”表示出来吗?案例3进位制[问题1]我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制.那么什么是进位制?不同的进位制之间又有什么联系呢?进位制是人们为了计数和运算的方便而约定的一种记数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十六进一,就是十六进制;等等.“满几进一”,就是几进制,几进制的基数就是几.可使用数字符号的个数称为基数.基数都是大于1的整数.如二进制可使用的数字有0和1,基数是2;十进制可使用的数字有0,1,2,…

,8,9等十个数字,基数是10;

十六进制可使用的数字或符号有0~9等10个数字以及A~F等6个字母(规定字母A~F对应10~15),十六进制的基数是16.注意:为了区分不同的进位制,常在数字的右下脚标明基数.如111001(2)表示二进制数,34(5)表示5进制数.十进制数一般不标注基数.[问题2]十进制数3721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一,从而它可以写成下面的形式:3721=3×103+7×102+2×101+1×100.想一想二进制数1011(2)可以类似的写成什么形式?1011(2)=1×23+0×22+1×21+1×20.同理:3421(5)=3×53+4×52+2×51+1×50.C7A16(16)=12×164+7×163+10×162

+1×161+6×160.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式anan-1…a1a0(k)(0<an<k,0≤an-1,…,a1,a0<k)意思是:(1)第一个数字an不能等于0;(2)每一个数字an,an-1,…,a1,a0都须小于k.

k进制的数也可以表示成不同位上数字与基数k的幂的乘积之和的形式,即anan-1…a1a0(k)=an×kn+an-1×kn-1

+…+a1×k1+a0×k0.注意这是一个n+1位数.例1:把二进制数110011(2)化为十进制数.

分析:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.解:110011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.[问题4]你会把三进制数10221(3)化为十进制数吗?解:10221(3)=1×34+0×33+2×32+2×31

+1×30=81+18+6+1=106.k进制数转化为十进制数的方法

先把k进制的数表示成不同位上数字与基数k的幂的乘积之和的形式,即anan-1…a1a0(k)=an×kn+an-1×kn-1+…+a1×k1+a0×k0.再按照十进制数的运算规则计算出结果.例2:把89化为五进制的数.解:以5作为除数,相应的运算式为:174589余数532503∴89=324(5).89=517+4=5(53+2)+4=352+25+4=324(5)

例3:把89化为二进制的数.分析:把89化为二进制的数,需想办法将89先写成如下形式89=an×2n+an-1×2n-1+…+a1×21+a0×20.89=64+16+8+1=1×26+0×25+1×24 +1×23+0×22+0×21+1×20=1011001(2).但如果数太大,我们是无法这样凑出来的,怎么办?89=44×2+1,44=22×2+0,22=11×2+0,11=5×2+1,5=2×2+1,2=1×2+0,1=0×2+1,441例3:把89化为二进制的数.我们可以用下面的除法算式表示除2取余法:289余数22202110251221210201把算式中各步所得的余数从下到上排列,得到89=1011001(2).这种方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.可以用2连续去除89或所得商(一直到商为0为止),然后取余数---除2取余法.思考你会把三进制数10221

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论