版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市栖霞市2023-2024学年数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(且,)的一个极值点为2,则的最小值为()A. B.C. D.72.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.3.已知直线,,,则m值为()A. B.C.3 D.104.若函数在上为增函数,则a的取值范围为()A. B.C. D.5.2018年,伦敦著名的建筑事务所steynstudio在南非完成了一个惊艳世界的作品一一双曲线建筑的教堂,白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座教堂轻盈,极简和雕塑般的气质,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线下支的一部分,且该双曲线的上焦点到下顶点的距离为18,到渐近线距离为12,则此双曲线的离心率为()A. B.C. D.6.已知,,若,则实数的值为()A. B.C. D.27.下列说法正确的个数有()个①在中,若,则②是,,成等比数列的充要条件③直线是双曲线的一条渐近线④函数的导函数是,若,则是函数的极值点A.0 B.1C.2 D.38.已知等差数列的前项和为,若,,则()A. B.C. D.9.已知,是椭圆C的两个焦点,P是C上的一点,若以为直径的圆过点P,且,则C的离心率为()A. B.C. D.10.某一电子集成块有三个元件a,b,c并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A. B.C. D.11.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.812.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若“,”是真命题,则实数m的取值范围________.14.已知是双曲线的左焦点,圆与双曲线在第一象限的交点,若的中点在双曲线的渐近线上,则此双曲线的离心率是___________.15.抛物线焦点坐标是,则______16.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)进入11月份,大学强基计划开始报名,某“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图2所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值和中位数;(每组数据用该组的区间中点值表示)(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加强基计划考试,若已知6名同学中有4名理科生,2名文科生,试求这3人中含文科生的概率.18.(12分)在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.19.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.20.(12分)已知数列的前项和为,若.(1)求的通项公式;(2)设,求数列的前项和.21.(12分)如图,四棱锥中,侧面是边长为4的正三角形,且与底面垂直,底面是菱形,且,为的中点(1)求证:;(2)求点到平面的距离22.(10分)已知等差数列公差不为0,且成等比数列.(1)求数列的通项公式及其前n项和;(2)记,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出函数的导数,由给定极值点可得a与b的关系,再借助“1”的妙用求解即得.【详解】对求导得:,因函数的一个极值点为2,则,此时,,,因,即,因此,在2左右两侧邻近的区域值一正一负,2是函数的一个极值点,则有,又,,于是得,当且仅当,即时取“=”,所以的最小值为.故选:B2、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.3、C【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为,且,所以,解得;故选:C4、C【解析】求出函数的导数,要使函数在上为增函数,要保证导数在该区间上恒正即可,由此得到不等式,解得答案.详解】由题意可知,若在递增,则在恒成立,即有,则,故选:C.5、A【解析】设出双曲线的方程,根据已知条件列出方程组即可求解.【详解】设双曲线的方程为,由双曲线的上焦点到下顶点的距离为18,即,上焦点的坐标为,其中一条渐近线为,上焦点到渐近线的距离为,则,解得,,即,故选:.6、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.7、B【解析】根据三角函数、等比数列、双曲线和导数知识逐项分析即可求解.【详解】①在中,则有,因,所以,又余弦函数在上单调递减,所以,故①正确,②当且时,此时,但是,,不成等比数列,故②错误,③由双曲线可得双曲线的渐近线为,故③错误,④“”是“是函数的极值点”的必要不充分条件,故④错误.故选:B.8、B【解析】根据和可求得,结合等差数列通项公式可求得.【详解】设等差数列公差为,由得:;又,,.故选:B.9、B【解析】根据题意,在中,设,则,进而根据椭圆定义得,进而可得离心率.【详解】在中,设,则,又由椭圆定义可知则离心率,故选:B.【点睛】本题考查椭圆离心率的计算,考查运算求解能力,是基础题.本题解题的关键在于根据已知条件,结合椭圆的定义,在焦点三角形中根据边角关系求解.10、A【解析】记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,进而结合对立事件的概率公式得,再根据条件概率公式求解即可.【详解】解:记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,则为该集成块不能正常工作,所以,,所以故选:A11、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.12、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由于“,”是真命题,则实数m的取值集合就是函数的函数值的集合,据此即可求出结果.【详解】由于“,”是真命题,则实数m的取值集合就是函数的函数值的集合,即.故答案为:【点睛】本题主要考查了存在量词命题的概念的理解,以及数学转换思想,属于基础题.14、【解析】计算点渐近线的距离,从而得,由勾股定理计算,由双曲线定义列式,从而计算得,即可计算出离心率.【详解】设双曲线右焦点为,因为的中点在双曲线的渐近线上,由可知,,因为为中点,所以,所以,即垂直平分线段,所以到渐近线的距离为,可得,所以,由双曲线定义可知,,即,所以,所以.故答案为:【点睛】双曲线的离心率是椭圆最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围)15、2【解析】根据抛物线的几何性质直接求解可得.【详解】的焦点坐标为,即.故答案为:216、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平均值为74.6分,中位数为75分;(2).【解析】(1)利用频率分布直方图平均数和中位数算法直接计算即可;(2)将学生编号,用枚举法求解即可.【小问1详解】依题意可知:∴综合素质成绩的平均值为74.6分.由图易知∵分数在50~60、60~70、70~80的频率分别为0.12、0.18、0.40,∴中位数在70~80之间,设为,则,解得,∴综合素质成绩的中位数为75分.【小问2详解】设这6名同学分别为,,,,1,2,其中设1,2为文科生,从6人中选出3人,所有的可能的结果为,,,,,,,,,,,,,,,,,,,,共20种,其中含有文科学生的有,,,,,,,,,,,,,,,,共16种,∴含文科生的概率为.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到关于角A的关系式,求解A(II)再结合正弦面积公式得到三角形的边长的求解【详解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得19、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.20、(1)(2)【解析】(1)根据所给条件先求出首项,然后仿写,作差即可得到的通项公式;(2)根据(1)求出的通项公式,观察是由一个等差数列加上一个等比数列得到,要求其前项和,采用分组求和法结合公式法可求出前项和【小问1详解】当时,,解得;当时,,∴,化简得,∴是首项为1,公比为2的等比数列,∴,因此的通项公式为.【小问2详解】由(1)得,∴,∴,∴21、(1)证明见解析;(2).【解析】(1)取的中点,连接,,,先证明平面,再由平面得,(2)等体积法求解.根据题目条件,先证明为三棱锥的高,再求出以为顶点,为底面的三棱锥的体积和以为顶点,为底面的三棱锥的体积,根据,求点到平面的距离.【详解】(1)证明:如图,取的中点,连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度危险物品销售与安全应急处理与保险合同3篇
- 2025水电安装工程劳务分包合同全
- 2024年标准厂房转让协议版B版
- 2024年生猪养殖与屠宰企业质量保证合同3篇
- 2024年企业员工入职体检标准合作协议3篇
- 餐饮一条街租赁协议
- 野营旅行皮卡租赁协议
- 高等院校出纳人员聘用合同
- 2024年牛肉产品溯源及质量检测合同3篇
- 2024年度男女恋爱关系终止条件协议范本3篇
- 老君山分析报告范文
- 2024年世界职业院校技能大赛中职组“饲料营养与检测组”赛项考试题库(含答案)
- 学校长远发展规划
- 概率论与数理统计知到智慧树章节测试课后答案2024年秋中国农业大学
- 2024年广西职业院校技能大赛高职组《供应链管理》赛项样题-供应链规划设计
- 商城系统定制开发(2024版)合同3篇
- 城市基建竖井施工风险管理方案
- 智能环保监控施工合同
- 农村宅基地使用证更名协议书(2篇)
- 《弘扬中华传统文化》课件
- 2024年河北省中考历史真题卷及答案解析
评论
0/150
提交评论