版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省夏津一中2023-2024学年高二上数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若等差数列的前项和为,首项,,,则满足成立的最大正整数是()A. B.C. D.2.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.3.已知直线过点,且其方向向量,则直线的方程为()A. B.C. D.4.有下列四个命题,其中真命题是()A., B.,,C.,, D.,5.若数列的通项公式为,则该数列的第5项为()A. B.C. D.6.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列7.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.8.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形9.已知直线过点,且与直线垂直,则直线的方程是()A. B.C. D.10.过点且与直线垂直的直线方程是()A. B.C. D.11.若,则=()A.244 B.1C. D.12.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.10二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和.则数列的通项公式为_______.14.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.15.我国民间剪纸艺术在剪纸时经常会沿纸的某条对称轴把纸对折.现有一张半径为的圆形纸,对折次可以得到两个规格相同的图形,将其中之一进行第次对折后,就会得到三个图形,其中有两个规格相同,取规格相同的两个之一进行第次对折后,就会得到四个图形,其中依然有两个规格相同,以此类推,每次对折后都会有两个图形规格相同.如果把次对折后得到的不同规格的图形面积和用表示,由题意知,,则________;如果对折次,则________.16.设分别是平面的法向量,若,则实数的值是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2021年7月25日,在东京奥运会自行车公路赛中,奥地利数学女博士安娜·基秣崔天以3小时52分45秒的成绩获得冠军,震惊了世界!广大网友惊呼“学好数理化,走遍天下都不怕”.某市对中学生的体能测试成绩与数学测试成绩进行分析,并从中随机抽取了200人进行抽样分析,得到下表(单位:人):体能一般体能优秀合计数学一般5050100数学优秀4060100合计90110200(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关?(结果精确到小数点后两位)(2)①现从抽取的数学优秀的人中,按“体能优秀”与“体能一般”这两类进行分层抽样抽取10人,然后,再从这10人中随机选出4人,求其中至少有2人是“体能优秀”的概率;②将频率视为概率,以样本估计总体,从该市中学生中随机抽取10人参加座谈会,记其中“体能优秀”的人数为X,求X的数学期望和方差参考公式:,其中参考数据:0.150.100.050.250.0102.0722.7063.8415.0246.63518.(12分)已知函数,其中为常数,且(1)求证:时,;(2)已知a,b,p,q为正实数,满足,比较与的大小关系.19.(12分)已知点,,双曲线C上除顶点外任一点满足直线RM与QM的斜率之积为4.(1)求C方程;(2)若直线l过C上的一点P,且与C的渐近线相交于A,B两点,点A,B分别位于第一、第二象限,,求的最小值.20.(12分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围21.(12分)已知直线,直线经过点且与直线平行,设直线分別与x轴,y轴交于A,B两点.(1)求点A和B的坐标;(2)若圆C经过点A和B,且圆心C在直线上,求圆C的方程.22.(10分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由等差数列的,及得数列是递减的数列,因此可确定,然后利用等差数列的性质求前项和,确定和的正负【详解】∵,∴和异号,又数列是等差数列,首项,∴是递减的数列,,由,所以,,∴满足的最大自然数为4040故选:B【点睛】关键点睛:本题求满足的最大正整数的值,关键就是求出,时成立的的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.2、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D3、D【解析】根据题意和直线的点方向式方程即可得出结果.【详解】因为直线过点,且方向向量为,由直线的点方向式方程,可得直线的方程为:,整理,得.故选:D4、B【解析】对于选项A,令即可验证其不正确;对于选项C、选项D,令,即可验证其均不正确,进而可得出结果.【详解】对于选项A,令,则,故A错;对于选项B,令,则,显然成立,故B正确;对于选项C,令,则显然无解,故C错;对于选项D,令,则显然不成立,故D错.故选B【点睛】本题主要考查命题真假的判定,用特殊值法验证即可,属于常考题型.5、C【解析】直接根据通项公式,求;【详解】,故选:C6、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.7、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.8、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.9、D【解析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D10、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C11、D【解析】分别令代入已知关系式,再两式求和即可求解.【详解】根据,令时,整理得:令x=2时,整理得:由①+②得,,所以.故选:D.12、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:14、【解析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒15、①.②.【解析】首先根据题意得到,再计算即可;根据题意得到,再利用分组求和法求和即可.【详解】因为,,所以,所以..故答案为:;16、4【解析】根据分别是平面的法向量,且,则有求解.【详解】因为分别是平面的法向量,且所以所以解得故答案为:4【点睛】本题主要考查空间向量垂直,还考查了运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不能,理由见解析;(2)①,②,【解析】(1)运用公式求出,比较得出结论.(2)①先用分层抽样得到“体能优秀”与“体能一般”的人数,再利用公式计算至少有2人是“体能优秀”的概率.②根据已知条件知此分布列为二项分布,故利用数学期望和方差的公式即可求出答案【小问1详解】由表格的数据可得,,故不能在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关.【小问2详解】①在数学优秀的人群中,“体能优秀”与“体能一般”的比例为“体能一般”的人数为,“体能优秀”的人数为故再从这10人中随机选出4人,其中至少有2人是“体能优秀”的概率为.②由题意可得,随机抽取一人“体能优秀”的概率为,且故,18、(1)证明见解析(2)【解析】(1)根据导数判断出函数的单调性求出其最大值,即可证出;(2)由(1)知:,再变形即可得出小问1详解】因为,∴在上单调递减,又因,故当时,;当时,,所以在上单调递增,在上单调递减,所以.【小问2详解】由(1)知:,两边同乘以a得:,∴,即.19、(1)(2)1【解析】(1)由题意得,化简可得答案,(2)求出渐近线方程,设点,,,,,由可得,代入双曲线方程化简可得,然后表示的坐标,再进行数量积运算,化简后利用基本不等式可得答案【小问1详解】由题意得,即,整理得,因为双曲线的顶点坐标满足上式,所以C的方程为.【小问2详解】由(1)可知,曲线C的渐近线方程为,设点,,,,,由,得,整理得,①,把①代入,整理得②,因为,,所以.由,得,则,当且仅当时等号成立,所以的最小值是1.20、.【解析】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.根据非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要条件,可得,1﹣m≤1+m,解得m范围【详解】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.∴P=[﹣2,10]非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要条件,∴,1﹣m≤1+m,解得0≤m≤3∴m的取值范围是[0,3]【点睛】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题21、(1),;(2).【解析】(1)由直线平行及所过的点,应用点斜式写出直线方程,进而求A、B坐标.(2)由(1)求出垂直平分线方程,并联立直线求圆心坐标,即可求圆的半径,进而写出圆C的方程.【小问1详解】由题设,的斜率为,又直线与直线平行且过,所以直线为,即,令,则;令,则.所以,.【小问2详解】由(1)可得:垂直平分线为,即,联立,可得,即,故圆的半径为,所以圆C的方程为.22、(1)(2)不存在,理由见解析【解析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如图以E原点,分别以EB、AE、EC′所在直线为x轴、y轴、z轴建立空间直角坐标系,则B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版带物业增值服务物业房产买卖合同书3篇
- 二零二五版新能源研发及生产厂房买卖合同范本3篇
- 二零二五年度厨具行业人才培养与输送合同4篇
- 二零二五年度赎楼金融产品合作合同4篇
- 二零二五年度出轨婚姻解除后的子女抚养权及财产分割协议4篇
- 2025年度宗教活动场地租赁合同范本3篇
- 二零二五年度彩钢屋面防水隔热一体化工程承包协议3篇
- 2025年人力资源经理员工关系与劳动争议处理协议3篇
- 二零二五年度床垫售后服务质量保证合同3篇
- 2025年建筑工程劳务市场调研与行业分析合同3篇
- GB/T 45120-2024道路车辆48 V供电电压电气要求及试验
- 春节文化常识单选题100道及答案
- 12123交管学法减分考试题及答案
- 2025年寒假实践特色作业设计模板
- 24年追觅在线测评28题及答案
- 初中物理八年级下册《动能和势能》教学课件
- 高考满分作文常见结构
- 心肌梗死诊疗指南
- 食堂项目组织架构图
- 原油脱硫技术
- GB/T 2518-2019连续热镀锌和锌合金镀层钢板及钢带
评论
0/150
提交评论